Josué David Hernández-Varela, José Jorge Chanona-Pérez, Reza Foruzanmehr, Dora Iliana Medina
{"title":"通过响应面方法评估废咖啡渣中的全纤维素对作为食品包装材料的生物聚合物薄膜的增强效果。","authors":"Josué David Hernández-Varela, José Jorge Chanona-Pérez, Reza Foruzanmehr, Dora Iliana Medina","doi":"10.1002/bip.23585","DOIUrl":null,"url":null,"abstract":"<p>The pollution caused by petroleum-derived plastic materials has become a major environmental problem that has encouraged the development of new compostable and environmentally friendly materials for food packaging based on biomodified polymers with household residues. This study aims to design, synthesize, and characterize a biobased polymeric microstructure film from polyvinyl alcohol and chitosan reinforced with holocellulose from spent coffee grounds for food-sustainable packaging. Chemical isolation with a chlorite-based solution was performed to obtain the reinforced holocellulose from the spent coffee ground, and the solvent casting method was used to obtain the films to study. Physicochemical and microscopic characterizations were conducted to identify and select the best formulations using a simplex-centroid design analysis. The response surface methodology results indicate that the new packaging material obtained with equal amounts of polymers and reinforced material (1:1:1) possesses the appropriate barrier properties and microstructural character to prevent water attack and hydrophobic behavior and thus could be used as an alternative for food packaging materials.</p>","PeriodicalId":8866,"journal":{"name":"Biopolymers","volume":"115 5","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessing the reinforcement effect by response surface methodology of holocellulose from spent coffee grounds on biopolymeric films as food packaging materials\",\"authors\":\"Josué David Hernández-Varela, José Jorge Chanona-Pérez, Reza Foruzanmehr, Dora Iliana Medina\",\"doi\":\"10.1002/bip.23585\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The pollution caused by petroleum-derived plastic materials has become a major environmental problem that has encouraged the development of new compostable and environmentally friendly materials for food packaging based on biomodified polymers with household residues. This study aims to design, synthesize, and characterize a biobased polymeric microstructure film from polyvinyl alcohol and chitosan reinforced with holocellulose from spent coffee grounds for food-sustainable packaging. Chemical isolation with a chlorite-based solution was performed to obtain the reinforced holocellulose from the spent coffee ground, and the solvent casting method was used to obtain the films to study. Physicochemical and microscopic characterizations were conducted to identify and select the best formulations using a simplex-centroid design analysis. The response surface methodology results indicate that the new packaging material obtained with equal amounts of polymers and reinforced material (1:1:1) possesses the appropriate barrier properties and microstructural character to prevent water attack and hydrophobic behavior and thus could be used as an alternative for food packaging materials.</p>\",\"PeriodicalId\":8866,\"journal\":{\"name\":\"Biopolymers\",\"volume\":\"115 5\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biopolymers\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/bip.23585\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biopolymers","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bip.23585","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Assessing the reinforcement effect by response surface methodology of holocellulose from spent coffee grounds on biopolymeric films as food packaging materials
The pollution caused by petroleum-derived plastic materials has become a major environmental problem that has encouraged the development of new compostable and environmentally friendly materials for food packaging based on biomodified polymers with household residues. This study aims to design, synthesize, and characterize a biobased polymeric microstructure film from polyvinyl alcohol and chitosan reinforced with holocellulose from spent coffee grounds for food-sustainable packaging. Chemical isolation with a chlorite-based solution was performed to obtain the reinforced holocellulose from the spent coffee ground, and the solvent casting method was used to obtain the films to study. Physicochemical and microscopic characterizations were conducted to identify and select the best formulations using a simplex-centroid design analysis. The response surface methodology results indicate that the new packaging material obtained with equal amounts of polymers and reinforced material (1:1:1) possesses the appropriate barrier properties and microstructural character to prevent water attack and hydrophobic behavior and thus could be used as an alternative for food packaging materials.
期刊介绍:
Founded in 1963, Biopolymers publishes strictly peer-reviewed papers examining naturally occurring and synthetic biological macromolecules. By including experimental and theoretical studies on the fundamental behaviour as well as applications of biopolymers, the journal serves the interdisciplinary biochemical, biophysical, biomaterials and biomedical research communities.