Ying Ji, Jieqiong Wang, Ye Liu, Shaoyan Liu, Xuanjing Jiang, Huaming Huang
{"title":"柑橘 × 唐柚采后腐烂病病原体的分离和鉴定及其与酸性电解水的潜在抑制作用。","authors":"Ying Ji, Jieqiong Wang, Ye Liu, Shaoyan Liu, Xuanjing Jiang, Huaming Huang","doi":"10.1007/s12560-024-09604-4","DOIUrl":null,"url":null,"abstract":"<div><p>This study focused on the identification of rot-causing fungi in <i>Citrus</i> × <i>tangelo</i> (tangelo) with a particular emphasis on investigating the inhibitory effects of acidic electrolyzed water on the identified pathogens. The dominant strains responsible for postharvest decay were isolated from infected tangelo fruits and characterized through morphological observation, molecular identification, and pathogenicity detection. Two strains were isolated from postharvest diseased tangelo fruits, cultured and morphologically characterized, and had their gene fragments amplified using primers ITS1 and ITS4. The results revealed the rDNA-ITS sequence of two dominant pathogens were 100% homologous with those of <i>Penicillium citrinum</i> and <i>Aspergillus sydowii</i>. These isolated fungi were confirmed to induce tangelo disease, and subsequent re-isolation validated their consistency with the inoculum. Antifungal tests demonstrated that acidic electrolyzed water (AEW) exhibited a potent inhibitory effect on <i>P. citrinum</i> and <i>A. sydowii</i>, with EC<sub>50</sub> values of 85.4 μg/mL and 60.12 μg/mL, respectively. The inhibition zones of 150 μg/mL AEW to 2 kinds of pathogenic fungi were over 75 mm in diameter. Furthermore, treatment with AEW resulted in morphological changes such as bending and shrinking of the fungal hyphae surface. In addition, extracellular pH, conductivity, and absorbance at 260 nm of the fungi hypha significantly increased post-treatment with AEW. Pathogenic morphology and IST sequencing analysis confirmed <i>P. citrinum</i> and <i>A. sydowii</i> as the primary pathogenic fungi, with their growth effectively inhibited by AEW.</p></div>","PeriodicalId":563,"journal":{"name":"Food and Environmental Virology","volume":"16 3","pages":"409 - 421"},"PeriodicalIF":4.1000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11422426/pdf/","citationCount":"0","resultStr":"{\"title\":\"Isolation and Identification of Postharvest Rot Pathogens in Citrus × tangelo and Their Potential Inhibition with Acidic Electrolyzed Water\",\"authors\":\"Ying Ji, Jieqiong Wang, Ye Liu, Shaoyan Liu, Xuanjing Jiang, Huaming Huang\",\"doi\":\"10.1007/s12560-024-09604-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study focused on the identification of rot-causing fungi in <i>Citrus</i> × <i>tangelo</i> (tangelo) with a particular emphasis on investigating the inhibitory effects of acidic electrolyzed water on the identified pathogens. The dominant strains responsible for postharvest decay were isolated from infected tangelo fruits and characterized through morphological observation, molecular identification, and pathogenicity detection. Two strains were isolated from postharvest diseased tangelo fruits, cultured and morphologically characterized, and had their gene fragments amplified using primers ITS1 and ITS4. The results revealed the rDNA-ITS sequence of two dominant pathogens were 100% homologous with those of <i>Penicillium citrinum</i> and <i>Aspergillus sydowii</i>. These isolated fungi were confirmed to induce tangelo disease, and subsequent re-isolation validated their consistency with the inoculum. Antifungal tests demonstrated that acidic electrolyzed water (AEW) exhibited a potent inhibitory effect on <i>P. citrinum</i> and <i>A. sydowii</i>, with EC<sub>50</sub> values of 85.4 μg/mL and 60.12 μg/mL, respectively. The inhibition zones of 150 μg/mL AEW to 2 kinds of pathogenic fungi were over 75 mm in diameter. Furthermore, treatment with AEW resulted in morphological changes such as bending and shrinking of the fungal hyphae surface. In addition, extracellular pH, conductivity, and absorbance at 260 nm of the fungi hypha significantly increased post-treatment with AEW. Pathogenic morphology and IST sequencing analysis confirmed <i>P. citrinum</i> and <i>A. sydowii</i> as the primary pathogenic fungi, with their growth effectively inhibited by AEW.</p></div>\",\"PeriodicalId\":563,\"journal\":{\"name\":\"Food and Environmental Virology\",\"volume\":\"16 3\",\"pages\":\"409 - 421\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11422426/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food and Environmental Virology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12560-024-09604-4\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food and Environmental Virology","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1007/s12560-024-09604-4","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Isolation and Identification of Postharvest Rot Pathogens in Citrus × tangelo and Their Potential Inhibition with Acidic Electrolyzed Water
This study focused on the identification of rot-causing fungi in Citrus × tangelo (tangelo) with a particular emphasis on investigating the inhibitory effects of acidic electrolyzed water on the identified pathogens. The dominant strains responsible for postharvest decay were isolated from infected tangelo fruits and characterized through morphological observation, molecular identification, and pathogenicity detection. Two strains were isolated from postharvest diseased tangelo fruits, cultured and morphologically characterized, and had their gene fragments amplified using primers ITS1 and ITS4. The results revealed the rDNA-ITS sequence of two dominant pathogens were 100% homologous with those of Penicillium citrinum and Aspergillus sydowii. These isolated fungi were confirmed to induce tangelo disease, and subsequent re-isolation validated their consistency with the inoculum. Antifungal tests demonstrated that acidic electrolyzed water (AEW) exhibited a potent inhibitory effect on P. citrinum and A. sydowii, with EC50 values of 85.4 μg/mL and 60.12 μg/mL, respectively. The inhibition zones of 150 μg/mL AEW to 2 kinds of pathogenic fungi were over 75 mm in diameter. Furthermore, treatment with AEW resulted in morphological changes such as bending and shrinking of the fungal hyphae surface. In addition, extracellular pH, conductivity, and absorbance at 260 nm of the fungi hypha significantly increased post-treatment with AEW. Pathogenic morphology and IST sequencing analysis confirmed P. citrinum and A. sydowii as the primary pathogenic fungi, with their growth effectively inhibited by AEW.
期刊介绍:
Food and Environmental Virology publishes original articles, notes and review articles on any aspect relating to the transmission of pathogenic viruses via the environment (water, air, soil etc.) and foods. This includes epidemiological studies, identification of novel or emerging pathogens, methods of analysis or characterisation, studies on survival and elimination, and development of procedural controls for industrial processes, e.g. HACCP plans. The journal will cover all aspects of this important area, and encompass studies on any human, animal, and plant pathogenic virus which is capable of transmission via the environment or food.