{"title":"苦难使人更弱:竞争劣势种群的有限进化适应。","authors":"Nan Chen, Quan-Guo Zhang","doi":"10.1111/ele.14457","DOIUrl":null,"url":null,"abstract":"<p>Interspecific competition can hinder populations from evolutionarily adapting to abiotic environments, particularly by reducing population size and niche space; and feedback may arise between competitive ability and evolutionary adaptation. Here we studied populations of two model bacterial species, <i>Escherichia coli</i> and <i>Pseudomonas fluorescens</i>, that evolved in monocultures and cocultures for approximately 2400 generations at three temperatures. The two species showed a reversal in competitive dominance in cocultures along the temperature gradient. Populations from cocultures where they had been competitively dominant showed the same magnitude of fitness gain as those in monocultures. However, competitively inferior populations in cocultures showed limited abiotic adaptation compared with those in monocultures. The inferior populations in cocultures were also more likely to evolve weaker interspecific competitive ability, or go extinct. The possible competitive ability-adaptation feedback may have crucial consequences for population persistence.</p>","PeriodicalId":161,"journal":{"name":"Ecology Letters","volume":"27 6","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Suffering makes you weaker: Limited evolutionary adaptation in competitively inferior populations\",\"authors\":\"Nan Chen, Quan-Guo Zhang\",\"doi\":\"10.1111/ele.14457\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Interspecific competition can hinder populations from evolutionarily adapting to abiotic environments, particularly by reducing population size and niche space; and feedback may arise between competitive ability and evolutionary adaptation. Here we studied populations of two model bacterial species, <i>Escherichia coli</i> and <i>Pseudomonas fluorescens</i>, that evolved in monocultures and cocultures for approximately 2400 generations at three temperatures. The two species showed a reversal in competitive dominance in cocultures along the temperature gradient. Populations from cocultures where they had been competitively dominant showed the same magnitude of fitness gain as those in monocultures. However, competitively inferior populations in cocultures showed limited abiotic adaptation compared with those in monocultures. The inferior populations in cocultures were also more likely to evolve weaker interspecific competitive ability, or go extinct. The possible competitive ability-adaptation feedback may have crucial consequences for population persistence.</p>\",\"PeriodicalId\":161,\"journal\":{\"name\":\"Ecology Letters\",\"volume\":\"27 6\",\"pages\":\"\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2024-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecology Letters\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ele.14457\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecology Letters","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ele.14457","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
Suffering makes you weaker: Limited evolutionary adaptation in competitively inferior populations
Interspecific competition can hinder populations from evolutionarily adapting to abiotic environments, particularly by reducing population size and niche space; and feedback may arise between competitive ability and evolutionary adaptation. Here we studied populations of two model bacterial species, Escherichia coli and Pseudomonas fluorescens, that evolved in monocultures and cocultures for approximately 2400 generations at three temperatures. The two species showed a reversal in competitive dominance in cocultures along the temperature gradient. Populations from cocultures where they had been competitively dominant showed the same magnitude of fitness gain as those in monocultures. However, competitively inferior populations in cocultures showed limited abiotic adaptation compared with those in monocultures. The inferior populations in cocultures were also more likely to evolve weaker interspecific competitive ability, or go extinct. The possible competitive ability-adaptation feedback may have crucial consequences for population persistence.
期刊介绍:
Ecology Letters serves as a platform for the rapid publication of innovative research in ecology. It considers manuscripts across all taxa, biomes, and geographic regions, prioritizing papers that investigate clearly stated hypotheses. The journal publishes concise papers of high originality and general interest, contributing to new developments in ecology. Purely descriptive papers and those that only confirm or extend previous results are discouraged.