吸烟行为与骨骼健康之间存在共同的遗传基础:全基因组跨性状分析的启示。

IF 5.1 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM
Chenjiarui Qin, Wenqiang Zhang, Changfeng Xiao, Yang Qu, Jinyu Xiao, Xueyao Wu, Li Zhang, Yutong Wang, Lin He, Jingwei Zhu, Wenzhi Wang, Yun Li, Lei Sun, Xia Jiang
{"title":"吸烟行为与骨骼健康之间存在共同的遗传基础:全基因组跨性状分析的启示。","authors":"Chenjiarui Qin, Wenqiang Zhang, Changfeng Xiao, Yang Qu, Jinyu Xiao, Xueyao Wu, Li Zhang, Yutong Wang, Lin He, Jingwei Zhu, Wenzhi Wang, Yun Li, Lei Sun, Xia Jiang","doi":"10.1093/jbmr/zjae082","DOIUrl":null,"url":null,"abstract":"<p><p>Although the negative association of tobacco smoking with osteoporosis is well-documented, little is known regarding the shared genetic basis underlying these conditions. In this study, we aim to investigate a shared genetic architecture between smoking and heel estimated bone mineral density (eBMD), a reliable proxy for osteoporosis. We conducted a comprehensive genome-wide cross-trait analysis to identify genetic correlation, pleiotropic loci and causal relationship of smoking with eBMD, leveraging summary statistics of the hitherto largest genome-wide association studies conducted in European ancestry for smoking initiation (Nsmoker = 1 175 108, Nnonsmoker = 1 493 921), heaviness (cigarettes per day, N = 618 489), cessation (Ncurrent smoker = 304 244, Nformer smoker = 843 028), and eBMD (N = 426 824). A significant negative global genetic correlation was found for smoking cessation and eBMD (${r}_g$ = -0.051, P = 0.01), while we failed to identify a significant global genetic correlation of smoking initiation or heaviness with eBMD. Partitioning the whole genome into independent blocks, we observed 6 significant shared local signals for smoking and eBMD, with 22q13.1 showing the strongest regional genetic correlation. Such a genetic overlap was further supported by 71 pleiotropic loci identified in the cross-trait meta-analysis. Mendelian randomization identified no causal effect of smoking initiation (beta = -0.003 g/cm2, 95% CI = -0.033 to 0.027) or heaviness (beta = -0.017 g/cm2, 95% CI = -0.072 to 0.038) on eBMD, but a putative causal effect of genetic predisposition to being a current smoker was associated with a lower eBMD compared to former smokers (beta = -0.100 g/cm2, 95% CI = -0.181 to -0.018). Our study demonstrates a pronounced biological pleiotropy as well as a putative causal link between current smoking status and eBMD, providing novel insights into the primary prevention and modifiable intervention of osteoporosis by advocating individuals to avoid, reduce or quit smoking as early as possible.</p>","PeriodicalId":185,"journal":{"name":"Journal of Bone and Mineral Research","volume":" ","pages":"918-928"},"PeriodicalIF":5.1000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Shared genetic basis connects smoking behaviors and bone health: insights from a genome-wide cross-trait analysis.\",\"authors\":\"Chenjiarui Qin, Wenqiang Zhang, Changfeng Xiao, Yang Qu, Jinyu Xiao, Xueyao Wu, Li Zhang, Yutong Wang, Lin He, Jingwei Zhu, Wenzhi Wang, Yun Li, Lei Sun, Xia Jiang\",\"doi\":\"10.1093/jbmr/zjae082\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Although the negative association of tobacco smoking with osteoporosis is well-documented, little is known regarding the shared genetic basis underlying these conditions. In this study, we aim to investigate a shared genetic architecture between smoking and heel estimated bone mineral density (eBMD), a reliable proxy for osteoporosis. We conducted a comprehensive genome-wide cross-trait analysis to identify genetic correlation, pleiotropic loci and causal relationship of smoking with eBMD, leveraging summary statistics of the hitherto largest genome-wide association studies conducted in European ancestry for smoking initiation (Nsmoker = 1 175 108, Nnonsmoker = 1 493 921), heaviness (cigarettes per day, N = 618 489), cessation (Ncurrent smoker = 304 244, Nformer smoker = 843 028), and eBMD (N = 426 824). A significant negative global genetic correlation was found for smoking cessation and eBMD (${r}_g$ = -0.051, P = 0.01), while we failed to identify a significant global genetic correlation of smoking initiation or heaviness with eBMD. Partitioning the whole genome into independent blocks, we observed 6 significant shared local signals for smoking and eBMD, with 22q13.1 showing the strongest regional genetic correlation. Such a genetic overlap was further supported by 71 pleiotropic loci identified in the cross-trait meta-analysis. Mendelian randomization identified no causal effect of smoking initiation (beta = -0.003 g/cm2, 95% CI = -0.033 to 0.027) or heaviness (beta = -0.017 g/cm2, 95% CI = -0.072 to 0.038) on eBMD, but a putative causal effect of genetic predisposition to being a current smoker was associated with a lower eBMD compared to former smokers (beta = -0.100 g/cm2, 95% CI = -0.181 to -0.018). Our study demonstrates a pronounced biological pleiotropy as well as a putative causal link between current smoking status and eBMD, providing novel insights into the primary prevention and modifiable intervention of osteoporosis by advocating individuals to avoid, reduce or quit smoking as early as possible.</p>\",\"PeriodicalId\":185,\"journal\":{\"name\":\"Journal of Bone and Mineral Research\",\"volume\":\" \",\"pages\":\"918-928\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Bone and Mineral Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/jbmr/zjae082\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bone and Mineral Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/jbmr/zjae082","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

摘要

尽管吸烟与骨质疏松症之间的负相关已得到充分证实,但人们对这些病症背后的共同遗传基础却知之甚少。在本研究中,我们旨在调查吸烟与跟骨估计骨矿密度(eBMD)(骨质疏松症的可靠替代指标)之间的共同遗传结构。我们进行了一项全面的全基因组跨性状分析,以确定吸烟与 eBMD 之间的遗传相关性、多效应位点和因果关系,并利用迄今为止在欧洲血统中进行的最大的全基因组关联研究中有关吸烟起始的汇总统计数据(Nsmoker = 1 175 108、Nnonsmoker = 1 493 921)、吸烟量(每天吸烟数,N = 618 489)、戒烟数(Ncurrent smoker = 304 244,Nformer smoker = 843 028)和 eBMD(N = 426 824)。我们发现,戒烟与 eBMD 存在明显的全基因负相关(${r}_g$ = -0.051,P = 0.01),而我们未能发现开始吸烟或吸烟量大与 eBMD 存在明显的全基因相关。将全基因组划分为独立区块后,我们观察到吸烟和 eBMD 有六个显著的共享局部信号,其中 22q13.1 显示出最强的区域遗传相关性。在跨性状荟萃分析中发现的 71 个多效基因位点进一步证实了这种遗传重叠。孟德尔随机分析发现,开始吸烟(beta = -0.003 g/cm2,95%CI = -0.033-0.027)或吸烟量大(beta = -0.017 g/cm2,95%CI = -0.072-0.038)对eBMD没有因果效应,但与以前吸烟者相比,当前吸烟者的遗传易感性与较低的eBMD相关(beta = -0.100 g/cm2,95%CI = -0.181--0.018)。我们的研究表明,当前吸烟状况与 eBMD 之间存在明显的生物学多效性和假定的因果关系,为骨质疏松症的一级预防和可调节干预提供了新的见解,倡导人们尽早避免、减少或戒烟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Shared genetic basis connects smoking behaviors and bone health: insights from a genome-wide cross-trait analysis.

Although the negative association of tobacco smoking with osteoporosis is well-documented, little is known regarding the shared genetic basis underlying these conditions. In this study, we aim to investigate a shared genetic architecture between smoking and heel estimated bone mineral density (eBMD), a reliable proxy for osteoporosis. We conducted a comprehensive genome-wide cross-trait analysis to identify genetic correlation, pleiotropic loci and causal relationship of smoking with eBMD, leveraging summary statistics of the hitherto largest genome-wide association studies conducted in European ancestry for smoking initiation (Nsmoker = 1 175 108, Nnonsmoker = 1 493 921), heaviness (cigarettes per day, N = 618 489), cessation (Ncurrent smoker = 304 244, Nformer smoker = 843 028), and eBMD (N = 426 824). A significant negative global genetic correlation was found for smoking cessation and eBMD (${r}_g$ = -0.051, P = 0.01), while we failed to identify a significant global genetic correlation of smoking initiation or heaviness with eBMD. Partitioning the whole genome into independent blocks, we observed 6 significant shared local signals for smoking and eBMD, with 22q13.1 showing the strongest regional genetic correlation. Such a genetic overlap was further supported by 71 pleiotropic loci identified in the cross-trait meta-analysis. Mendelian randomization identified no causal effect of smoking initiation (beta = -0.003 g/cm2, 95% CI = -0.033 to 0.027) or heaviness (beta = -0.017 g/cm2, 95% CI = -0.072 to 0.038) on eBMD, but a putative causal effect of genetic predisposition to being a current smoker was associated with a lower eBMD compared to former smokers (beta = -0.100 g/cm2, 95% CI = -0.181 to -0.018). Our study demonstrates a pronounced biological pleiotropy as well as a putative causal link between current smoking status and eBMD, providing novel insights into the primary prevention and modifiable intervention of osteoporosis by advocating individuals to avoid, reduce or quit smoking as early as possible.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Bone and Mineral Research
Journal of Bone and Mineral Research 医学-内分泌学与代谢
CiteScore
11.30
自引率
6.50%
发文量
257
审稿时长
2 months
期刊介绍: The Journal of Bone and Mineral Research (JBMR) publishes highly impactful original manuscripts, reviews, and special articles on basic, translational and clinical investigations relevant to the musculoskeletal system and mineral metabolism. Specifically, the journal is interested in original research on the biology and physiology of skeletal tissues, interdisciplinary research spanning the musculoskeletal and other systems, including but not limited to immunology, hematology, energy metabolism, cancer biology, and neurology, and systems biology topics using large scale “-omics” approaches. The journal welcomes clinical research on the pathophysiology, treatment and prevention of osteoporosis and fractures, as well as sarcopenia, disorders of bone and mineral metabolism, and rare or genetically determined bone diseases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信