{"title":"基于滑模观测器的机轮移动机器人模型预测跟踪控制","authors":"","doi":"10.1016/j.isatra.2024.05.050","DOIUrl":null,"url":null,"abstract":"<div><p>This paper proposes a novel adaptive variable power sliding mode observer-based model predictive control (AVPSMO-MPC) method for the trajectory tracking of a Mecanum-wheeled mobile robot (MWMR) with external disturbances and model uncertainties. First, in the absence of disturbances and uncertainties, a model predictive controller that considers various physical constraints is designed based on the nominal dynamics model of the MWMR, which can transform the tracking problem into a constrained quadratic programming (QP) problem to solve the optimal control inputs online. Subsequently, to improve the anti-jamming ability of the MWMR, an AVPSMO is designed as a feedforward compensation controller to suppress the effects of external disturbances and model uncertainties during the actual motion of the MWMR, and the stability of the AVPSMO is proved via Lyapunov theory. The proposed AVPSMO-MPC method can achieve precise tracking control while ensuring that the constraints of MWMR are not violated in the presence of disturbances and uncertainties. Finally, comparative simulation cases are presented to demonstrate the effectiveness and robustness of the proposed method.</p></div>","PeriodicalId":14660,"journal":{"name":"ISA transactions","volume":"151 ","pages":"Pages 51-61"},"PeriodicalIF":6.3000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sliding mode observer-based model predictive tracking control for Mecanum-wheeled mobile robot\",\"authors\":\"\",\"doi\":\"10.1016/j.isatra.2024.05.050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper proposes a novel adaptive variable power sliding mode observer-based model predictive control (AVPSMO-MPC) method for the trajectory tracking of a Mecanum-wheeled mobile robot (MWMR) with external disturbances and model uncertainties. First, in the absence of disturbances and uncertainties, a model predictive controller that considers various physical constraints is designed based on the nominal dynamics model of the MWMR, which can transform the tracking problem into a constrained quadratic programming (QP) problem to solve the optimal control inputs online. Subsequently, to improve the anti-jamming ability of the MWMR, an AVPSMO is designed as a feedforward compensation controller to suppress the effects of external disturbances and model uncertainties during the actual motion of the MWMR, and the stability of the AVPSMO is proved via Lyapunov theory. The proposed AVPSMO-MPC method can achieve precise tracking control while ensuring that the constraints of MWMR are not violated in the presence of disturbances and uncertainties. Finally, comparative simulation cases are presented to demonstrate the effectiveness and robustness of the proposed method.</p></div>\",\"PeriodicalId\":14660,\"journal\":{\"name\":\"ISA transactions\",\"volume\":\"151 \",\"pages\":\"Pages 51-61\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISA transactions\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0019057824002672\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISA transactions","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019057824002672","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Sliding mode observer-based model predictive tracking control for Mecanum-wheeled mobile robot
This paper proposes a novel adaptive variable power sliding mode observer-based model predictive control (AVPSMO-MPC) method for the trajectory tracking of a Mecanum-wheeled mobile robot (MWMR) with external disturbances and model uncertainties. First, in the absence of disturbances and uncertainties, a model predictive controller that considers various physical constraints is designed based on the nominal dynamics model of the MWMR, which can transform the tracking problem into a constrained quadratic programming (QP) problem to solve the optimal control inputs online. Subsequently, to improve the anti-jamming ability of the MWMR, an AVPSMO is designed as a feedforward compensation controller to suppress the effects of external disturbances and model uncertainties during the actual motion of the MWMR, and the stability of the AVPSMO is proved via Lyapunov theory. The proposed AVPSMO-MPC method can achieve precise tracking control while ensuring that the constraints of MWMR are not violated in the presence of disturbances and uncertainties. Finally, comparative simulation cases are presented to demonstrate the effectiveness and robustness of the proposed method.
期刊介绍:
ISA Transactions serves as a platform for showcasing advancements in measurement and automation, catering to both industrial practitioners and applied researchers. It covers a wide array of topics within measurement, including sensors, signal processing, data analysis, and fault detection, supported by techniques such as artificial intelligence and communication systems. Automation topics encompass control strategies, modelling, system reliability, and maintenance, alongside optimization and human-machine interaction. The journal targets research and development professionals in control systems, process instrumentation, and automation from academia and industry.