有界投影维数模块的有限类型与塞尔条件

IF 0.8 3区 数学 Q2 MATHEMATICS
Michal Hrbek, Giovanna Le Gros
{"title":"有界投影维数模块的有限类型与塞尔条件","authors":"Michal Hrbek,&nbsp;Giovanna Le Gros","doi":"10.1112/blms.13099","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mi>R</mi>\n <annotation>$R$</annotation>\n </semantics></math> be a commutative Noetherian ring. For a natural number <span></span><math>\n <semantics>\n <mi>k</mi>\n <annotation>$k$</annotation>\n </semantics></math>, we prove that the class of modules of projective dimension bounded by <span></span><math>\n <semantics>\n <mi>k</mi>\n <annotation>$k$</annotation>\n </semantics></math> is of finite type if and only if <span></span><math>\n <semantics>\n <mi>R</mi>\n <annotation>$R$</annotation>\n </semantics></math> satisfies Serre's condition <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>S</mi>\n <mi>k</mi>\n </msub>\n <mo>)</mo>\n </mrow>\n <annotation>$(S_k)$</annotation>\n </semantics></math>. In particular, this answers positively a question of Bazzoni and Herbera in the specific setting of a Gorenstein ring. Applying similar techniques, we also show that the <span></span><math>\n <semantics>\n <mi>k</mi>\n <annotation>$k$</annotation>\n </semantics></math>-dimensional version of the Govorov–Lazard theorem holds if and only if <span></span><math>\n <semantics>\n <mi>R</mi>\n <annotation>$R$</annotation>\n </semantics></math> satisfies the ‘almost’ Serre condition <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>C</mi>\n <mrow>\n <mi>k</mi>\n <mo>+</mo>\n <mn>1</mn>\n </mrow>\n </msub>\n <mo>)</mo>\n </mrow>\n <annotation>$(C_{k+1})$</annotation>\n </semantics></math>.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 8","pages":"2760-2775"},"PeriodicalIF":0.8000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The finite type of modules of bounded projective dimension and Serre's conditions\",\"authors\":\"Michal Hrbek,&nbsp;Giovanna Le Gros\",\"doi\":\"10.1112/blms.13099\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span></span><math>\\n <semantics>\\n <mi>R</mi>\\n <annotation>$R$</annotation>\\n </semantics></math> be a commutative Noetherian ring. For a natural number <span></span><math>\\n <semantics>\\n <mi>k</mi>\\n <annotation>$k$</annotation>\\n </semantics></math>, we prove that the class of modules of projective dimension bounded by <span></span><math>\\n <semantics>\\n <mi>k</mi>\\n <annotation>$k$</annotation>\\n </semantics></math> is of finite type if and only if <span></span><math>\\n <semantics>\\n <mi>R</mi>\\n <annotation>$R$</annotation>\\n </semantics></math> satisfies Serre's condition <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <msub>\\n <mi>S</mi>\\n <mi>k</mi>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(S_k)$</annotation>\\n </semantics></math>. In particular, this answers positively a question of Bazzoni and Herbera in the specific setting of a Gorenstein ring. Applying similar techniques, we also show that the <span></span><math>\\n <semantics>\\n <mi>k</mi>\\n <annotation>$k$</annotation>\\n </semantics></math>-dimensional version of the Govorov–Lazard theorem holds if and only if <span></span><math>\\n <semantics>\\n <mi>R</mi>\\n <annotation>$R$</annotation>\\n </semantics></math> satisfies the ‘almost’ Serre condition <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <msub>\\n <mi>C</mi>\\n <mrow>\\n <mi>k</mi>\\n <mo>+</mo>\\n <mn>1</mn>\\n </mrow>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(C_{k+1})$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"56 8\",\"pages\":\"2760-2775\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/blms.13099\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.13099","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设 是交换诺特环。对于一个自然数 ,我们证明,当且仅当满足塞雷条件时,以投影维数为界的模块类是有限类型的。特别是,这正面回答了巴佐尼和赫伯拉在戈伦斯坦环的特定环境中提出的一个问题。应用类似的技术,我们还证明了当且仅当满足 "近似 "塞雷条件时,戈沃罗夫-拉扎德定理的-维版本成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The finite type of modules of bounded projective dimension and Serre's conditions

Let R $R$ be a commutative Noetherian ring. For a natural number k $k$ , we prove that the class of modules of projective dimension bounded by k $k$ is of finite type if and only if R $R$ satisfies Serre's condition ( S k ) $(S_k)$ . In particular, this answers positively a question of Bazzoni and Herbera in the specific setting of a Gorenstein ring. Applying similar techniques, we also show that the k $k$ -dimensional version of the Govorov–Lazard theorem holds if and only if R $R$ satisfies the ‘almost’ Serre condition ( C k + 1 ) $(C_{k+1})$ .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信