三项式公式与布莱克-斯科尔斯公式的收敛速度

Pub Date : 2024-06-01 DOI:10.1016/j.spl.2024.110167
Yuttana Ratibenyakool , Kritsana Neammanee
{"title":"三项式公式与布莱克-斯科尔斯公式的收敛速度","authors":"Yuttana Ratibenyakool ,&nbsp;Kritsana Neammanee","doi":"10.1016/j.spl.2024.110167","DOIUrl":null,"url":null,"abstract":"<div><p>The Black–Scholes formula which was introduced by three economists, Black et al. (1973) has been widely used to calculate the theoretical price of the European call option. In 1979, Cox, Ross and Rubinstein (<span>Cox et al., 1979</span>) gave the binomial formula which is a tool to find the price of European option and showed that this formula converges to the Black–Scholes formula as the number of periods <span><math><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></math></span> converges to infinity. In 1988, Boyle investigated another formula that is used to find the price of European option, that is the trinomial formula. In 2015, Puspita et al. gave examples to show that the trinomial formula is closed to the Black–Scholes formula. After that, Ratibenyakool and Neammanee (2020) gave the rigorous proof of this convergence. In this paper, we show that the rate of convergence is of order <span><math><mfrac><mrow><mn>1</mn></mrow><mrow><msqrt><mrow><mi>n</mi></mrow></msqrt></mrow></mfrac></math></span>.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rate of convergence of trinomial formula to Black–Scholes formula\",\"authors\":\"Yuttana Ratibenyakool ,&nbsp;Kritsana Neammanee\",\"doi\":\"10.1016/j.spl.2024.110167\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Black–Scholes formula which was introduced by three economists, Black et al. (1973) has been widely used to calculate the theoretical price of the European call option. In 1979, Cox, Ross and Rubinstein (<span>Cox et al., 1979</span>) gave the binomial formula which is a tool to find the price of European option and showed that this formula converges to the Black–Scholes formula as the number of periods <span><math><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></math></span> converges to infinity. In 1988, Boyle investigated another formula that is used to find the price of European option, that is the trinomial formula. In 2015, Puspita et al. gave examples to show that the trinomial formula is closed to the Black–Scholes formula. After that, Ratibenyakool and Neammanee (2020) gave the rigorous proof of this convergence. In this paper, we show that the rate of convergence is of order <span><math><mfrac><mrow><mn>1</mn></mrow><mrow><msqrt><mrow><mi>n</mi></mrow></msqrt></mrow></mfrac></math></span>.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167715224001366\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167715224001366","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Black 等人(1973 年)提出的 Black-Scholes 公式被广泛用于计算欧式看涨期权的理论价格。1979 年,Cox、Ross 和 Rubinstein(Cox et al.,1979 年)给出了二项式公式,这是一种计算欧式期权价格的工具,并表明当期数(n)趋近于无穷大时,该公式与 Black-Scholes 公式趋同。1988 年,Boyle 研究了另一个用于计算欧式期权价格的公式,即三项式公式。2015 年,Puspita 等人举例说明了三项式公式与 Black-Scholes 公式是封闭的。之后,Ratibenyakool 和 Neammanee(2020 年)给出了这种收敛性的严格证明。在本文中,我们证明了收敛速率为 1n 阶。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Rate of convergence of trinomial formula to Black–Scholes formula

The Black–Scholes formula which was introduced by three economists, Black et al. (1973) has been widely used to calculate the theoretical price of the European call option. In 1979, Cox, Ross and Rubinstein (Cox et al., 1979) gave the binomial formula which is a tool to find the price of European option and showed that this formula converges to the Black–Scholes formula as the number of periods (n) converges to infinity. In 1988, Boyle investigated another formula that is used to find the price of European option, that is the trinomial formula. In 2015, Puspita et al. gave examples to show that the trinomial formula is closed to the Black–Scholes formula. After that, Ratibenyakool and Neammanee (2020) gave the rigorous proof of this convergence. In this paper, we show that the rate of convergence is of order 1n.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信