{"title":"三项式公式与布莱克-斯科尔斯公式的收敛速度","authors":"Yuttana Ratibenyakool , Kritsana Neammanee","doi":"10.1016/j.spl.2024.110167","DOIUrl":null,"url":null,"abstract":"<div><p>The Black–Scholes formula which was introduced by three economists, Black et al. (1973) has been widely used to calculate the theoretical price of the European call option. In 1979, Cox, Ross and Rubinstein (<span>Cox et al., 1979</span>) gave the binomial formula which is a tool to find the price of European option and showed that this formula converges to the Black–Scholes formula as the number of periods <span><math><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></math></span> converges to infinity. In 1988, Boyle investigated another formula that is used to find the price of European option, that is the trinomial formula. In 2015, Puspita et al. gave examples to show that the trinomial formula is closed to the Black–Scholes formula. After that, Ratibenyakool and Neammanee (2020) gave the rigorous proof of this convergence. In this paper, we show that the rate of convergence is of order <span><math><mfrac><mrow><mn>1</mn></mrow><mrow><msqrt><mrow><mi>n</mi></mrow></msqrt></mrow></mfrac></math></span>.</p></div>","PeriodicalId":49475,"journal":{"name":"Statistics & Probability Letters","volume":"213 ","pages":"Article 110167"},"PeriodicalIF":0.9000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rate of convergence of trinomial formula to Black–Scholes formula\",\"authors\":\"Yuttana Ratibenyakool , Kritsana Neammanee\",\"doi\":\"10.1016/j.spl.2024.110167\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Black–Scholes formula which was introduced by three economists, Black et al. (1973) has been widely used to calculate the theoretical price of the European call option. In 1979, Cox, Ross and Rubinstein (<span>Cox et al., 1979</span>) gave the binomial formula which is a tool to find the price of European option and showed that this formula converges to the Black–Scholes formula as the number of periods <span><math><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></math></span> converges to infinity. In 1988, Boyle investigated another formula that is used to find the price of European option, that is the trinomial formula. In 2015, Puspita et al. gave examples to show that the trinomial formula is closed to the Black–Scholes formula. After that, Ratibenyakool and Neammanee (2020) gave the rigorous proof of this convergence. In this paper, we show that the rate of convergence is of order <span><math><mfrac><mrow><mn>1</mn></mrow><mrow><msqrt><mrow><mi>n</mi></mrow></msqrt></mrow></mfrac></math></span>.</p></div>\",\"PeriodicalId\":49475,\"journal\":{\"name\":\"Statistics & Probability Letters\",\"volume\":\"213 \",\"pages\":\"Article 110167\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics & Probability Letters\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167715224001366\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics & Probability Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167715224001366","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Rate of convergence of trinomial formula to Black–Scholes formula
The Black–Scholes formula which was introduced by three economists, Black et al. (1973) has been widely used to calculate the theoretical price of the European call option. In 1979, Cox, Ross and Rubinstein (Cox et al., 1979) gave the binomial formula which is a tool to find the price of European option and showed that this formula converges to the Black–Scholes formula as the number of periods converges to infinity. In 1988, Boyle investigated another formula that is used to find the price of European option, that is the trinomial formula. In 2015, Puspita et al. gave examples to show that the trinomial formula is closed to the Black–Scholes formula. After that, Ratibenyakool and Neammanee (2020) gave the rigorous proof of this convergence. In this paper, we show that the rate of convergence is of order .
期刊介绍:
Statistics & Probability Letters adopts a novel and highly innovative approach to the publication of research findings in statistics and probability. It features concise articles, rapid publication and broad coverage of the statistics and probability literature.
Statistics & Probability Letters is a refereed journal. Articles will be limited to six journal pages (13 double-space typed pages) including references and figures. Apart from the six-page limitation, originality, quality and clarity will be the criteria for choosing the material to be published in Statistics & Probability Letters. Every attempt will be made to provide the first review of a submitted manuscript within three months of submission.
The proliferation of literature and long publication delays have made it difficult for researchers and practitioners to keep up with new developments outside of, or even within, their specialization. The aim of Statistics & Probability Letters is to help to alleviate this problem. Concise communications (letters) allow readers to quickly and easily digest large amounts of material and to stay up-to-date with developments in all areas of statistics and probability.
The mainstream of Letters will focus on new statistical methods, theoretical results, and innovative applications of statistics and probability to other scientific disciplines. Key results and central ideas must be presented in a clear and concise manner. These results may be part of a larger study that the author will submit at a later time as a full length paper to SPL or to another journal. Theory and methodology may be published with proofs omitted, or only sketched, but only if sufficient support material is provided so that the findings can be verified. Empirical and computational results that are of significant value will be published.