流体和等离子体中的精确球形旋涡型平衡流动

Jason M. Keller, Alexei F. Cheviakov
{"title":"流体和等离子体中的精确球形旋涡型平衡流动","authors":"Jason M. Keller,&nbsp;Alexei F. Cheviakov","doi":"10.1016/j.fpp.2024.100063","DOIUrl":null,"url":null,"abstract":"<div><p>The famous Hill’s solution describing a spherical vortex with nested toroidal pressure surfaces, bounded by a sphere, propelling itself in an ideal Eulerian fluid, is re-derived using Galilei symmetry and the Bragg–Hawthorne equations in spherical coordinates. The correspondence between equilibrium Euler equations of fluid dynamics and static magnetohydrodynamic equations is used to derive a generalized vortex type solution that corresponds to dynamic fluid equilibria and static plasma equilibria with a nonzero azimuthal vector field component, satisfying physical boundary conditions. Separation of variables in Bragg–Hawthorne equation in spherical coordinates is used to construct further new fluid and plasma equilibria with nested toroidal flux surfaces, featuring respectively boundary vorticity sheets and current sheets. Finally, the instability of the original Hill’s vortex with respect to certain radial perturbations of the spherical flux surface is proven analytically and illustrated numerically.</p></div>","PeriodicalId":100558,"journal":{"name":"Fundamental Plasma Physics","volume":"11 ","pages":"Article 100063"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772828524000281/pdfft?md5=48286a2083b13c041ea1a8a771cfbc8e&pid=1-s2.0-S2772828524000281-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Exact spherical vortex-type equilibrium flows in fluids and plasmas\",\"authors\":\"Jason M. Keller,&nbsp;Alexei F. Cheviakov\",\"doi\":\"10.1016/j.fpp.2024.100063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The famous Hill’s solution describing a spherical vortex with nested toroidal pressure surfaces, bounded by a sphere, propelling itself in an ideal Eulerian fluid, is re-derived using Galilei symmetry and the Bragg–Hawthorne equations in spherical coordinates. The correspondence between equilibrium Euler equations of fluid dynamics and static magnetohydrodynamic equations is used to derive a generalized vortex type solution that corresponds to dynamic fluid equilibria and static plasma equilibria with a nonzero azimuthal vector field component, satisfying physical boundary conditions. Separation of variables in Bragg–Hawthorne equation in spherical coordinates is used to construct further new fluid and plasma equilibria with nested toroidal flux surfaces, featuring respectively boundary vorticity sheets and current sheets. Finally, the instability of the original Hill’s vortex with respect to certain radial perturbations of the spherical flux surface is proven analytically and illustrated numerically.</p></div>\",\"PeriodicalId\":100558,\"journal\":{\"name\":\"Fundamental Plasma Physics\",\"volume\":\"11 \",\"pages\":\"Article 100063\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772828524000281/pdfft?md5=48286a2083b13c041ea1a8a771cfbc8e&pid=1-s2.0-S2772828524000281-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fundamental Plasma Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772828524000281\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fundamental Plasma Physics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772828524000281","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

利用伽利略对称性和球面坐标中的布拉格-霍桑方程,重新推导出了著名的希尔解,该解描述了在理想欧拉流体中,以球面为界,具有嵌套环形压力面的球形涡旋的推进过程。利用流体动力学平衡欧拉方程和静态磁流体动力学方程之间的对应关系,推导出一种广义旋涡型解法,该解法对应于动态流体平衡和静态等离子体平衡,具有非零方位矢量场分量,满足物理边界条件。利用布拉格-霍桑方程在球面坐标下的变量分离,进一步构建了具有嵌套环形通量面的新流体和等离子体平衡,分别以边界涡流片和电流片为特征。最后,分析和数值说明了原始希尔旋涡在球形通量面的某些径向扰动下的不稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exact spherical vortex-type equilibrium flows in fluids and plasmas

The famous Hill’s solution describing a spherical vortex with nested toroidal pressure surfaces, bounded by a sphere, propelling itself in an ideal Eulerian fluid, is re-derived using Galilei symmetry and the Bragg–Hawthorne equations in spherical coordinates. The correspondence between equilibrium Euler equations of fluid dynamics and static magnetohydrodynamic equations is used to derive a generalized vortex type solution that corresponds to dynamic fluid equilibria and static plasma equilibria with a nonzero azimuthal vector field component, satisfying physical boundary conditions. Separation of variables in Bragg–Hawthorne equation in spherical coordinates is used to construct further new fluid and plasma equilibria with nested toroidal flux surfaces, featuring respectively boundary vorticity sheets and current sheets. Finally, the instability of the original Hill’s vortex with respect to certain radial perturbations of the spherical flux surface is proven analytically and illustrated numerically.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信