R. Mobarak, A. Mengarelli, F. Verdini, S. Fioretti, L. Burattini, A. Tigrini
{"title":"通过肌电图和运动学信息融合及最少的记录设置,增强步态识别能力","authors":"R. Mobarak, A. Mengarelli, F. Verdini, S. Fioretti, L. Burattini, A. Tigrini","doi":"10.22153/kej.2024.05.002","DOIUrl":null,"url":null,"abstract":"The limited mobility of lower limb amputees highlights the need for advancements in prosthetic control strategies to restore natural locomotion. This paper proposes an information fusion approach for gait phase recognition using surface electromyography (sEMG) and kinematics data. Time-domain (TD) features were extracted from the myoelectric data and three data-driven models, specifically Support Vector Machine (SVM), K-Nearest Neighbours (KNN), and Artificial Neural Network (ANN), were compared in three different input conditions i.e. sEMG features, hip angle, and their fusion. Gait phase estimation results averaged from 40 healthy participants during normal walking with 10 strides per each demonstrated that the proposed fusion approach has consistently outperformed (p<0.0001) the other two conditions achieving a maximum accuracy of 85.48% with SVM. The findings suggest promising applications in prosthetic motion control and rehabilitative exoskeletons, highlighting the potential for improved user-driven strategies in lower limb prostheses.","PeriodicalId":7637,"journal":{"name":"Al-Khwarizmi Engineering Journal","volume":"60 17","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced Gait Phases Recognition by EMG and Kinematics Information Fusion and a Minimal Recording Setuping Setup\",\"authors\":\"R. Mobarak, A. Mengarelli, F. Verdini, S. Fioretti, L. Burattini, A. Tigrini\",\"doi\":\"10.22153/kej.2024.05.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The limited mobility of lower limb amputees highlights the need for advancements in prosthetic control strategies to restore natural locomotion. This paper proposes an information fusion approach for gait phase recognition using surface electromyography (sEMG) and kinematics data. Time-domain (TD) features were extracted from the myoelectric data and three data-driven models, specifically Support Vector Machine (SVM), K-Nearest Neighbours (KNN), and Artificial Neural Network (ANN), were compared in three different input conditions i.e. sEMG features, hip angle, and their fusion. Gait phase estimation results averaged from 40 healthy participants during normal walking with 10 strides per each demonstrated that the proposed fusion approach has consistently outperformed (p<0.0001) the other two conditions achieving a maximum accuracy of 85.48% with SVM. The findings suggest promising applications in prosthetic motion control and rehabilitative exoskeletons, highlighting the potential for improved user-driven strategies in lower limb prostheses.\",\"PeriodicalId\":7637,\"journal\":{\"name\":\"Al-Khwarizmi Engineering Journal\",\"volume\":\"60 17\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Al-Khwarizmi Engineering Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22153/kej.2024.05.002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Al-Khwarizmi Engineering Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22153/kej.2024.05.002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Enhanced Gait Phases Recognition by EMG and Kinematics Information Fusion and a Minimal Recording Setuping Setup
The limited mobility of lower limb amputees highlights the need for advancements in prosthetic control strategies to restore natural locomotion. This paper proposes an information fusion approach for gait phase recognition using surface electromyography (sEMG) and kinematics data. Time-domain (TD) features were extracted from the myoelectric data and three data-driven models, specifically Support Vector Machine (SVM), K-Nearest Neighbours (KNN), and Artificial Neural Network (ANN), were compared in three different input conditions i.e. sEMG features, hip angle, and their fusion. Gait phase estimation results averaged from 40 healthy participants during normal walking with 10 strides per each demonstrated that the proposed fusion approach has consistently outperformed (p<0.0001) the other two conditions achieving a maximum accuracy of 85.48% with SVM. The findings suggest promising applications in prosthetic motion control and rehabilitative exoskeletons, highlighting the potential for improved user-driven strategies in lower limb prostheses.