通过肌电图和运动学信息融合及最少的记录设置,增强步态识别能力

R. Mobarak, A. Mengarelli, F. Verdini, S. Fioretti, L. Burattini, A. Tigrini
{"title":"通过肌电图和运动学信息融合及最少的记录设置,增强步态识别能力","authors":"R. Mobarak, A. Mengarelli, F. Verdini, S. Fioretti, L. Burattini, A. Tigrini","doi":"10.22153/kej.2024.05.002","DOIUrl":null,"url":null,"abstract":"The limited mobility of lower limb amputees highlights the need for advancements in prosthetic control strategies to restore natural locomotion. This paper proposes an information fusion approach for gait phase recognition using surface electromyography (sEMG) and kinematics data. Time-domain (TD) features were extracted from the myoelectric data and three data-driven models, specifically Support Vector Machine (SVM), K-Nearest Neighbours (KNN), and Artificial Neural Network (ANN), were compared in three different input conditions i.e. sEMG features, hip angle, and their fusion. Gait phase estimation results averaged from 40 healthy participants during normal walking with 10 strides per each demonstrated that the proposed fusion approach has consistently outperformed (p<0.0001) the other two conditions achieving a maximum accuracy of 85.48% with SVM. The findings suggest promising applications in prosthetic motion control and rehabilitative exoskeletons, highlighting the potential for improved user-driven strategies in lower limb prostheses.","PeriodicalId":7637,"journal":{"name":"Al-Khwarizmi Engineering Journal","volume":"60 17","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced Gait Phases Recognition by EMG and Kinematics Information Fusion and a Minimal Recording Setuping Setup\",\"authors\":\"R. Mobarak, A. Mengarelli, F. Verdini, S. Fioretti, L. Burattini, A. Tigrini\",\"doi\":\"10.22153/kej.2024.05.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The limited mobility of lower limb amputees highlights the need for advancements in prosthetic control strategies to restore natural locomotion. This paper proposes an information fusion approach for gait phase recognition using surface electromyography (sEMG) and kinematics data. Time-domain (TD) features were extracted from the myoelectric data and three data-driven models, specifically Support Vector Machine (SVM), K-Nearest Neighbours (KNN), and Artificial Neural Network (ANN), were compared in three different input conditions i.e. sEMG features, hip angle, and their fusion. Gait phase estimation results averaged from 40 healthy participants during normal walking with 10 strides per each demonstrated that the proposed fusion approach has consistently outperformed (p<0.0001) the other two conditions achieving a maximum accuracy of 85.48% with SVM. The findings suggest promising applications in prosthetic motion control and rehabilitative exoskeletons, highlighting the potential for improved user-driven strategies in lower limb prostheses.\",\"PeriodicalId\":7637,\"journal\":{\"name\":\"Al-Khwarizmi Engineering Journal\",\"volume\":\"60 17\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Al-Khwarizmi Engineering Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22153/kej.2024.05.002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Al-Khwarizmi Engineering Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22153/kej.2024.05.002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

下肢截肢者的活动能力有限,这凸显了假肢控制策略的进步以恢复自然运动的必要性。本文提出了一种利用表面肌电图(sEMG)和运动学数据进行步态相位识别的信息融合方法。本文从肌电数据中提取了时域(TD)特征,并比较了三种不同输入条件下的数据驱动模型,即支持向量机(SVM)、K-近邻(KNN)和人工神经网络(ANN)。步态相位估计结果取自 40 名健康参与者正常行走时的平均值,每步 10 个步幅,结果表明所提出的融合方法始终优于其他两种条件(P<0.0001),SVM 的最高准确率为 85.48%。研究结果表明,在假肢运动控制和康复外骨骼中的应用前景广阔,凸显了在下肢假肢中改进用户驱动策略的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhanced Gait Phases Recognition by EMG and Kinematics Information Fusion and a Minimal Recording Setuping Setup
The limited mobility of lower limb amputees highlights the need for advancements in prosthetic control strategies to restore natural locomotion. This paper proposes an information fusion approach for gait phase recognition using surface electromyography (sEMG) and kinematics data. Time-domain (TD) features were extracted from the myoelectric data and three data-driven models, specifically Support Vector Machine (SVM), K-Nearest Neighbours (KNN), and Artificial Neural Network (ANN), were compared in three different input conditions i.e. sEMG features, hip angle, and their fusion. Gait phase estimation results averaged from 40 healthy participants during normal walking with 10 strides per each demonstrated that the proposed fusion approach has consistently outperformed (p<0.0001) the other two conditions achieving a maximum accuracy of 85.48% with SVM. The findings suggest promising applications in prosthetic motion control and rehabilitative exoskeletons, highlighting the potential for improved user-driven strategies in lower limb prostheses.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信