基于学习的自适应信息路径规划方法

IF 4.3 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Marija Popović , Joshua Ott , Julius Rückin , Mykel J. Kochenderfer
{"title":"基于学习的自适应信息路径规划方法","authors":"Marija Popović ,&nbsp;Joshua Ott ,&nbsp;Julius Rückin ,&nbsp;Mykel J. Kochenderfer","doi":"10.1016/j.robot.2024.104727","DOIUrl":null,"url":null,"abstract":"<div><p>Adaptive informative path planning (AIPP) is important to many robotics applications, enabling mobile robots to efficiently collect useful data about initially unknown environments. In addition, learning-based methods are increasingly used in robotics to enhance adaptability, versatility, and robustness across diverse and complex tasks. Our survey explores research on applying robotic learning to AIPP, bridging the gap between these two research fields. We begin by providing a unified mathematical problem definition for general AIPP problems. Next, we establish two complementary taxonomies of current work from the perspectives of (i) learning algorithms and (ii) robotic applications. We explore synergies, recent trends, and highlight the benefits of learning-based methods in AIPP frameworks. Finally, we discuss key challenges and promising future directions to enable more generally applicable and robust robotic data-gathering systems through learning. We provide a comprehensive catalog of papers reviewed in our survey, including publicly available repositories, to facilitate future studies in the field.</p></div>","PeriodicalId":49592,"journal":{"name":"Robotics and Autonomous Systems","volume":"179 ","pages":"Article 104727"},"PeriodicalIF":4.3000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0921889024001118/pdfft?md5=28de4de4b6cc186bd0057d379cd895ba&pid=1-s2.0-S0921889024001118-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Learning-based methods for adaptive informative path planning\",\"authors\":\"Marija Popović ,&nbsp;Joshua Ott ,&nbsp;Julius Rückin ,&nbsp;Mykel J. Kochenderfer\",\"doi\":\"10.1016/j.robot.2024.104727\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Adaptive informative path planning (AIPP) is important to many robotics applications, enabling mobile robots to efficiently collect useful data about initially unknown environments. In addition, learning-based methods are increasingly used in robotics to enhance adaptability, versatility, and robustness across diverse and complex tasks. Our survey explores research on applying robotic learning to AIPP, bridging the gap between these two research fields. We begin by providing a unified mathematical problem definition for general AIPP problems. Next, we establish two complementary taxonomies of current work from the perspectives of (i) learning algorithms and (ii) robotic applications. We explore synergies, recent trends, and highlight the benefits of learning-based methods in AIPP frameworks. Finally, we discuss key challenges and promising future directions to enable more generally applicable and robust robotic data-gathering systems through learning. We provide a comprehensive catalog of papers reviewed in our survey, including publicly available repositories, to facilitate future studies in the field.</p></div>\",\"PeriodicalId\":49592,\"journal\":{\"name\":\"Robotics and Autonomous Systems\",\"volume\":\"179 \",\"pages\":\"Article 104727\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0921889024001118/pdfft?md5=28de4de4b6cc186bd0057d379cd895ba&pid=1-s2.0-S0921889024001118-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Robotics and Autonomous Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0921889024001118\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotics and Autonomous Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921889024001118","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

自适应信息路径规划(AIPP)对许多机器人应用都很重要,它能让移动机器人有效地收集最初未知环境的有用数据。此外,基于学习的方法也越来越多地应用于机器人领域,以增强机器人在各种复杂任务中的适应性、多功能性和鲁棒性。我们的调查探讨了将机器人学习应用于 AIPP 的研究,弥合了这两个研究领域之间的差距。首先,我们为一般 AIPP 问题提供了统一的数学问题定义。接下来,我们从 (i) 学习算法和 (ii) 机器人应用的角度,为当前工作建立了两个互补的分类法。我们探讨了 AIPP 框架中基于学习的方法的协同作用、最新趋势和优势。最后,我们讨论了通过学习实现更普遍适用、更强大的机器人数据采集系统所面临的主要挑战和未来的发展方向。我们提供了一份综合目录,收录了在我们的调查中审查过的论文,包括可公开获取的资料库,以促进该领域的未来研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning-based methods for adaptive informative path planning

Adaptive informative path planning (AIPP) is important to many robotics applications, enabling mobile robots to efficiently collect useful data about initially unknown environments. In addition, learning-based methods are increasingly used in robotics to enhance adaptability, versatility, and robustness across diverse and complex tasks. Our survey explores research on applying robotic learning to AIPP, bridging the gap between these two research fields. We begin by providing a unified mathematical problem definition for general AIPP problems. Next, we establish two complementary taxonomies of current work from the perspectives of (i) learning algorithms and (ii) robotic applications. We explore synergies, recent trends, and highlight the benefits of learning-based methods in AIPP frameworks. Finally, we discuss key challenges and promising future directions to enable more generally applicable and robust robotic data-gathering systems through learning. We provide a comprehensive catalog of papers reviewed in our survey, including publicly available repositories, to facilitate future studies in the field.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Robotics and Autonomous Systems
Robotics and Autonomous Systems 工程技术-机器人学
CiteScore
9.00
自引率
7.00%
发文量
164
审稿时长
4.5 months
期刊介绍: Robotics and Autonomous Systems will carry articles describing fundamental developments in the field of robotics, with special emphasis on autonomous systems. An important goal of this journal is to extend the state of the art in both symbolic and sensory based robot control and learning in the context of autonomous systems. Robotics and Autonomous Systems will carry articles on the theoretical, computational and experimental aspects of autonomous systems, or modules of such systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信