{"title":"探索新配体(DDIBM)金配合物的抗癌活性:其金属配合物的合成、光谱鉴定和磁感应强度","authors":"Siham Sami Noor, I. K. Kareem","doi":"10.22146/ijc.89954","DOIUrl":null,"url":null,"abstract":"The new heterocyclic ligand, 5-(dimethylamino)-2-(((2-((E)-(4,5-diphenyl-1H-imidazol-2-yl)diazenyl)benzyl)imino)methyl)phenol (DDIBM), was synthesized via the condensation of p-aminobenzylamine with 4,5-diphenyl imidazole, and the resultant compound was condensed with 4-(dimethylamino)-2-hydroxybenzaldehyde. Various instrumental techniques such as mass, 1H-NMR, IR, C.H.N elemental analysis, and UV-vis spectroscopy were used to analyze a newly synthesized ligand. A novel series of complexes was prepared by complexing the ligand with Ni(II), Cu(II), Co(II), and Au(III) and characterized using some of the mentioned techniques. Flame atomic absorption spectroscopy was used to measure the metal ion percentages in the complexes. The magnetic susceptibility and molar conductivity were studied. The electronic spectral data and the magnetic measurement predict the octahedral structure of the complexes except Au(III) complex which has square planer geometry. All complexes showed electrolyte properties. This study aimed to conduct an in vitro cytotoxicity comparative study of DDIBM and its Au(III) complex on human breast cancer cells (MCF-7) and other normal cells. The Au(III) complex was found to be highly selective in targeting cancer cells without affecting normal healthy cells, compared to the ligand. Thus, this complex can be considered as a new drug for treating breast cancer cells (MCF-7), and an attempt in the future to study its effect on other types of cancer.","PeriodicalId":13515,"journal":{"name":"Indonesian Journal of Chemistry","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring the Anticancer Activity of Gold Complex with Newly Ligand (DDIBM): Synthesis, Spectral Identification and Magnetic Susceptibility of Its Metallic Complexes\",\"authors\":\"Siham Sami Noor, I. K. Kareem\",\"doi\":\"10.22146/ijc.89954\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The new heterocyclic ligand, 5-(dimethylamino)-2-(((2-((E)-(4,5-diphenyl-1H-imidazol-2-yl)diazenyl)benzyl)imino)methyl)phenol (DDIBM), was synthesized via the condensation of p-aminobenzylamine with 4,5-diphenyl imidazole, and the resultant compound was condensed with 4-(dimethylamino)-2-hydroxybenzaldehyde. Various instrumental techniques such as mass, 1H-NMR, IR, C.H.N elemental analysis, and UV-vis spectroscopy were used to analyze a newly synthesized ligand. A novel series of complexes was prepared by complexing the ligand with Ni(II), Cu(II), Co(II), and Au(III) and characterized using some of the mentioned techniques. Flame atomic absorption spectroscopy was used to measure the metal ion percentages in the complexes. The magnetic susceptibility and molar conductivity were studied. The electronic spectral data and the magnetic measurement predict the octahedral structure of the complexes except Au(III) complex which has square planer geometry. All complexes showed electrolyte properties. This study aimed to conduct an in vitro cytotoxicity comparative study of DDIBM and its Au(III) complex on human breast cancer cells (MCF-7) and other normal cells. The Au(III) complex was found to be highly selective in targeting cancer cells without affecting normal healthy cells, compared to the ligand. Thus, this complex can be considered as a new drug for treating breast cancer cells (MCF-7), and an attempt in the future to study its effect on other types of cancer.\",\"PeriodicalId\":13515,\"journal\":{\"name\":\"Indonesian Journal of Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indonesian Journal of Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22146/ijc.89954\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indonesian Journal of Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22146/ijc.89954","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Exploring the Anticancer Activity of Gold Complex with Newly Ligand (DDIBM): Synthesis, Spectral Identification and Magnetic Susceptibility of Its Metallic Complexes
The new heterocyclic ligand, 5-(dimethylamino)-2-(((2-((E)-(4,5-diphenyl-1H-imidazol-2-yl)diazenyl)benzyl)imino)methyl)phenol (DDIBM), was synthesized via the condensation of p-aminobenzylamine with 4,5-diphenyl imidazole, and the resultant compound was condensed with 4-(dimethylamino)-2-hydroxybenzaldehyde. Various instrumental techniques such as mass, 1H-NMR, IR, C.H.N elemental analysis, and UV-vis spectroscopy were used to analyze a newly synthesized ligand. A novel series of complexes was prepared by complexing the ligand with Ni(II), Cu(II), Co(II), and Au(III) and characterized using some of the mentioned techniques. Flame atomic absorption spectroscopy was used to measure the metal ion percentages in the complexes. The magnetic susceptibility and molar conductivity were studied. The electronic spectral data and the magnetic measurement predict the octahedral structure of the complexes except Au(III) complex which has square planer geometry. All complexes showed electrolyte properties. This study aimed to conduct an in vitro cytotoxicity comparative study of DDIBM and its Au(III) complex on human breast cancer cells (MCF-7) and other normal cells. The Au(III) complex was found to be highly selective in targeting cancer cells without affecting normal healthy cells, compared to the ligand. Thus, this complex can be considered as a new drug for treating breast cancer cells (MCF-7), and an attempt in the future to study its effect on other types of cancer.
期刊介绍:
Indonesian Journal of Chemistry is a peer-reviewed, open access journal that publishes original research articles, review articles, as well as short communication in all areas of chemistry, including educational chemistry, applied chemistry, and chemical engineering.