{"title":"关于 FI 模块的尾部","authors":"Peter Patzt, John D. Wiltshire-Gordon","doi":"10.1016/j.jpaa.2024.107741","DOIUrl":null,"url":null,"abstract":"<div><p>We study the end-behavior of integer-valued <span><math><mi>FI</mi></math></span>-modules. Our first result describes the high degrees of an <span><math><mi>FI</mi></math></span>-module in terms of newly defined tail invariants. Our main result provides an equivalence of categories between <span><math><mi>FI</mi></math></span>-tails and finitely supported modules for a new category that we call <span><math><mi>FJ</mi></math></span>. Objects of <span><math><mi>FJ</mi></math></span> are natural numbers, and morphisms are infinite series with summands drawn from certain modules of Lie brackets.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the tails of FI-modules\",\"authors\":\"Peter Patzt, John D. Wiltshire-Gordon\",\"doi\":\"10.1016/j.jpaa.2024.107741\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study the end-behavior of integer-valued <span><math><mi>FI</mi></math></span>-modules. Our first result describes the high degrees of an <span><math><mi>FI</mi></math></span>-module in terms of newly defined tail invariants. Our main result provides an equivalence of categories between <span><math><mi>FI</mi></math></span>-tails and finitely supported modules for a new category that we call <span><math><mi>FJ</mi></math></span>. Objects of <span><math><mi>FJ</mi></math></span> are natural numbers, and morphisms are infinite series with summands drawn from certain modules of Lie brackets.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022404924001385\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022404924001385","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
我们研究整数值 FI 模块的末端行为。我们的第一个结果用新定义的尾不变式描述了 FI 模块的高度。我们的主要结果为我们称之为 FJ 的新范畴提供了 FI-尾和有限支持模块之间的等价性。FJ 的对象是自然数,态是无穷级数,其和取自列括号的某些模块。
We study the end-behavior of integer-valued -modules. Our first result describes the high degrees of an -module in terms of newly defined tail invariants. Our main result provides an equivalence of categories between -tails and finitely supported modules for a new category that we call . Objects of are natural numbers, and morphisms are infinite series with summands drawn from certain modules of Lie brackets.