Nayab Batool Rizvi , Adnan Sarwar , Saba Waheed , Zeenat Fatima Iqbal , Muhammad Imran , Ayesha Javaid , Tak H. Kim , Muhammad Shahzeb Khan
{"title":"基于纳米的微塑料和纳米塑料污染修复策略:综述","authors":"Nayab Batool Rizvi , Adnan Sarwar , Saba Waheed , Zeenat Fatima Iqbal , Muhammad Imran , Ayesha Javaid , Tak H. Kim , Muhammad Shahzeb Khan","doi":"10.1016/j.jconhyd.2024.104380","DOIUrl":null,"url":null,"abstract":"<div><p>Due to rapid urbanization, there have been continuous environmental threats from different pollutants, especially from microplastics. Plastic products rapidly proliferate significantly contributing to the occurrence of micro-plastics, which poses a significant environmental risk. These microplastics originated from diverse sources and are characterized by their persistent and widespread occurrence; human health and the entire ecosystem are adversely affected by them. The removal of microplastics not only requires innovative technologies but also efficient materials capable of effectively eliminating them from our environment. The progress made so far has highlighted the advantages of utilizing the dimensional and structural properties of nanomaterials to increase the effectiveness of existing methods for micro-plastic treatment, aiming for a more sustainable approach to their removal. In the current review, we demonstrate a thorough overview of the sources, occurrences, and potential harmful effects of microplastics, followed by a further discussion of promising technologies used for their removal. An in-depth examination of both advantages and a few limitations of all these given technologies, including physical, chemical, and biological approaches, has been discussed. Additionally, the review explores the use of nanomaterials as an effective means to overcome obstacles and improve the efficiency of microplastic elimination methods. n conclusion, this review addresses, current challenges in this field and outlines the future perspectives for further research in this domain.</p></div>","PeriodicalId":15530,"journal":{"name":"Journal of contaminant hydrology","volume":"265 ","pages":"Article 104380"},"PeriodicalIF":3.5000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nano-based remediation strategies for micro and nanoplastic pollution\",\"authors\":\"Nayab Batool Rizvi , Adnan Sarwar , Saba Waheed , Zeenat Fatima Iqbal , Muhammad Imran , Ayesha Javaid , Tak H. Kim , Muhammad Shahzeb Khan\",\"doi\":\"10.1016/j.jconhyd.2024.104380\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Due to rapid urbanization, there have been continuous environmental threats from different pollutants, especially from microplastics. Plastic products rapidly proliferate significantly contributing to the occurrence of micro-plastics, which poses a significant environmental risk. These microplastics originated from diverse sources and are characterized by their persistent and widespread occurrence; human health and the entire ecosystem are adversely affected by them. The removal of microplastics not only requires innovative technologies but also efficient materials capable of effectively eliminating them from our environment. The progress made so far has highlighted the advantages of utilizing the dimensional and structural properties of nanomaterials to increase the effectiveness of existing methods for micro-plastic treatment, aiming for a more sustainable approach to their removal. In the current review, we demonstrate a thorough overview of the sources, occurrences, and potential harmful effects of microplastics, followed by a further discussion of promising technologies used for their removal. An in-depth examination of both advantages and a few limitations of all these given technologies, including physical, chemical, and biological approaches, has been discussed. Additionally, the review explores the use of nanomaterials as an effective means to overcome obstacles and improve the efficiency of microplastic elimination methods. n conclusion, this review addresses, current challenges in this field and outlines the future perspectives for further research in this domain.</p></div>\",\"PeriodicalId\":15530,\"journal\":{\"name\":\"Journal of contaminant hydrology\",\"volume\":\"265 \",\"pages\":\"Article 104380\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of contaminant hydrology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169772224000846\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of contaminant hydrology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169772224000846","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Nano-based remediation strategies for micro and nanoplastic pollution
Due to rapid urbanization, there have been continuous environmental threats from different pollutants, especially from microplastics. Plastic products rapidly proliferate significantly contributing to the occurrence of micro-plastics, which poses a significant environmental risk. These microplastics originated from diverse sources and are characterized by their persistent and widespread occurrence; human health and the entire ecosystem are adversely affected by them. The removal of microplastics not only requires innovative technologies but also efficient materials capable of effectively eliminating them from our environment. The progress made so far has highlighted the advantages of utilizing the dimensional and structural properties of nanomaterials to increase the effectiveness of existing methods for micro-plastic treatment, aiming for a more sustainable approach to their removal. In the current review, we demonstrate a thorough overview of the sources, occurrences, and potential harmful effects of microplastics, followed by a further discussion of promising technologies used for their removal. An in-depth examination of both advantages and a few limitations of all these given technologies, including physical, chemical, and biological approaches, has been discussed. Additionally, the review explores the use of nanomaterials as an effective means to overcome obstacles and improve the efficiency of microplastic elimination methods. n conclusion, this review addresses, current challenges in this field and outlines the future perspectives for further research in this domain.
期刊介绍:
The Journal of Contaminant Hydrology is an international journal publishing scientific articles pertaining to the contamination of subsurface water resources. Emphasis is placed on investigations of the physical, chemical, and biological processes influencing the behavior and fate of organic and inorganic contaminants in the unsaturated (vadose) and saturated (groundwater) zones, as well as at groundwater-surface water interfaces. The ecological impacts of contaminants transported both from and to aquifers are of interest. Articles on contamination of surface water only, without a link to groundwater, are out of the scope. Broad latitude is allowed in identifying contaminants of interest, and include legacy and emerging pollutants, nutrients, nanoparticles, pathogenic microorganisms (e.g., bacteria, viruses, protozoa), microplastics, and various constituents associated with energy production (e.g., methane, carbon dioxide, hydrogen sulfide).
The journal''s scope embraces a wide range of topics including: experimental investigations of contaminant sorption, diffusion, transformation, volatilization and transport in the surface and subsurface; characterization of soil and aquifer properties only as they influence contaminant behavior; development and testing of mathematical models of contaminant behaviour; innovative techniques for restoration of contaminated sites; development of new tools or techniques for monitoring the extent of soil and groundwater contamination; transformation of contaminants in the hyporheic zone; effects of contaminants traversing the hyporheic zone on surface water and groundwater ecosystems; subsurface carbon sequestration and/or turnover; and migration of fluids associated with energy production into groundwater.