{"title":"从实验室到田间:用于植物养分实时跟踪的纳米生物传感器","authors":"Anjali Bharti, Utkarsh Jain, Nidhi Chauhan","doi":"10.1016/j.plana.2024.100079","DOIUrl":null,"url":null,"abstract":"<div><p>The growing world’s population and increasing demand for food production can lead to major food security and safety challenges. The different varieties of pathogens such as bacteria, fungi, viruses, pests, insects, etc. are the major causes of crop loss. So, the implementation of biosensors in the field of agriculture can be a beneficial tool to solve this problem. Biosensors can help to promote sustainable food production by the early detection of pathogens, fertilizers, herbicides, pesticides, moisture, and diseases in crops and animals, as well as the presence of heavy metal ions, and toxins. Additionally, it can also help to measure the different parameters including soil pH, chlorophyll content, photosynthetic content, protein content, and total nutrient uptake (macronutrients and micronutrients) by the plants, etc. With the implementation of these biosensors, farmers can increase crop yields, optimize fertilization techniques, and preserve resources by detecting and measuring particular nutrients. The implementation of Artificial Intelligence (AI) and Internet of Things (IoT) technology greatly transforms the state of traditional agriculture by addressing various challenges, such as pest management and post-harvest management issues. In this review, different types of biosensors are utilized in the agricultural field for monitoring various parameters related to plants but some obstacles need to be addressed. This article mainly focuses on the various types of biosensors including electrochemical biosensors, optical biosensors, plant wearable biosensors, etc., and their applications and advantages along with the adoption of AI and IoT technology in smart- farming are also discussed.</p></div>","PeriodicalId":101029,"journal":{"name":"Plant Nano Biology","volume":"9 ","pages":"Article 100079"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2773111124000226/pdfft?md5=c21f0da14ecab544a5ee6e154ac05476&pid=1-s2.0-S2773111124000226-main.pdf","citationCount":"0","resultStr":"{\"title\":\"From lab to field: Nano-biosensors for real-time plant nutrient tracking\",\"authors\":\"Anjali Bharti, Utkarsh Jain, Nidhi Chauhan\",\"doi\":\"10.1016/j.plana.2024.100079\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The growing world’s population and increasing demand for food production can lead to major food security and safety challenges. The different varieties of pathogens such as bacteria, fungi, viruses, pests, insects, etc. are the major causes of crop loss. So, the implementation of biosensors in the field of agriculture can be a beneficial tool to solve this problem. Biosensors can help to promote sustainable food production by the early detection of pathogens, fertilizers, herbicides, pesticides, moisture, and diseases in crops and animals, as well as the presence of heavy metal ions, and toxins. Additionally, it can also help to measure the different parameters including soil pH, chlorophyll content, photosynthetic content, protein content, and total nutrient uptake (macronutrients and micronutrients) by the plants, etc. With the implementation of these biosensors, farmers can increase crop yields, optimize fertilization techniques, and preserve resources by detecting and measuring particular nutrients. The implementation of Artificial Intelligence (AI) and Internet of Things (IoT) technology greatly transforms the state of traditional agriculture by addressing various challenges, such as pest management and post-harvest management issues. In this review, different types of biosensors are utilized in the agricultural field for monitoring various parameters related to plants but some obstacles need to be addressed. This article mainly focuses on the various types of biosensors including electrochemical biosensors, optical biosensors, plant wearable biosensors, etc., and their applications and advantages along with the adoption of AI and IoT technology in smart- farming are also discussed.</p></div>\",\"PeriodicalId\":101029,\"journal\":{\"name\":\"Plant Nano Biology\",\"volume\":\"9 \",\"pages\":\"Article 100079\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2773111124000226/pdfft?md5=c21f0da14ecab544a5ee6e154ac05476&pid=1-s2.0-S2773111124000226-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Nano Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2773111124000226\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Nano Biology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773111124000226","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
From lab to field: Nano-biosensors for real-time plant nutrient tracking
The growing world’s population and increasing demand for food production can lead to major food security and safety challenges. The different varieties of pathogens such as bacteria, fungi, viruses, pests, insects, etc. are the major causes of crop loss. So, the implementation of biosensors in the field of agriculture can be a beneficial tool to solve this problem. Biosensors can help to promote sustainable food production by the early detection of pathogens, fertilizers, herbicides, pesticides, moisture, and diseases in crops and animals, as well as the presence of heavy metal ions, and toxins. Additionally, it can also help to measure the different parameters including soil pH, chlorophyll content, photosynthetic content, protein content, and total nutrient uptake (macronutrients and micronutrients) by the plants, etc. With the implementation of these biosensors, farmers can increase crop yields, optimize fertilization techniques, and preserve resources by detecting and measuring particular nutrients. The implementation of Artificial Intelligence (AI) and Internet of Things (IoT) technology greatly transforms the state of traditional agriculture by addressing various challenges, such as pest management and post-harvest management issues. In this review, different types of biosensors are utilized in the agricultural field for monitoring various parameters related to plants but some obstacles need to be addressed. This article mainly focuses on the various types of biosensors including electrochemical biosensors, optical biosensors, plant wearable biosensors, etc., and their applications and advantages along with the adoption of AI and IoT technology in smart- farming are also discussed.