Christopher L. Peralta, Hoang P. Dang, Hugo N. Villegas Pico
{"title":"寻找不影响保护系统的电网形成技术:一项大有可为的技术","authors":"Christopher L. Peralta, Hoang P. Dang, Hugo N. Villegas Pico","doi":"10.1109/MELE.2024.3386036","DOIUrl":null,"url":null,"abstract":"The design of legacy-line protection elements has been guided by the behavior of synchronous machines during faults. Because of the significant field-winding inductance and rotating mass, the magnitude, angular frequency, and phase angle of the back-electromotive force (EMF) voltage waveforms of synchronous machines remain practically constant for several hundreds of milliseconds after a fault occurs. This has facilitated the engineering of the memory-polarization technique in mho distance elements, which has been effective for machine-dominant power grids. However, this assumption is no longer held for inverter-based resources (IBRs) because of the lack of field winding and moment of inertia in power electronics devices. Notably, the negative-sequence directional overcurrent protection and the quadrilateral distance elements have been impacted by early IBRs with grid-following (GFL) controls because they did not inject negative-sequence currents during asymmetrical faults.","PeriodicalId":45277,"journal":{"name":"IEEE Electrification Magazine","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Searching for Grid-Forming Technologies That Do Not Impact Protection Systems: A promising technology\",\"authors\":\"Christopher L. Peralta, Hoang P. Dang, Hugo N. Villegas Pico\",\"doi\":\"10.1109/MELE.2024.3386036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The design of legacy-line protection elements has been guided by the behavior of synchronous machines during faults. Because of the significant field-winding inductance and rotating mass, the magnitude, angular frequency, and phase angle of the back-electromotive force (EMF) voltage waveforms of synchronous machines remain practically constant for several hundreds of milliseconds after a fault occurs. This has facilitated the engineering of the memory-polarization technique in mho distance elements, which has been effective for machine-dominant power grids. However, this assumption is no longer held for inverter-based resources (IBRs) because of the lack of field winding and moment of inertia in power electronics devices. Notably, the negative-sequence directional overcurrent protection and the quadrilateral distance elements have been impacted by early IBRs with grid-following (GFL) controls because they did not inject negative-sequence currents during asymmetrical faults.\",\"PeriodicalId\":45277,\"journal\":{\"name\":\"IEEE Electrification Magazine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Electrification Magazine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MELE.2024.3386036\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Electrification Magazine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MELE.2024.3386036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Searching for Grid-Forming Technologies That Do Not Impact Protection Systems: A promising technology
The design of legacy-line protection elements has been guided by the behavior of synchronous machines during faults. Because of the significant field-winding inductance and rotating mass, the magnitude, angular frequency, and phase angle of the back-electromotive force (EMF) voltage waveforms of synchronous machines remain practically constant for several hundreds of milliseconds after a fault occurs. This has facilitated the engineering of the memory-polarization technique in mho distance elements, which has been effective for machine-dominant power grids. However, this assumption is no longer held for inverter-based resources (IBRs) because of the lack of field winding and moment of inertia in power electronics devices. Notably, the negative-sequence directional overcurrent protection and the quadrilateral distance elements have been impacted by early IBRs with grid-following (GFL) controls because they did not inject negative-sequence currents during asymmetrical faults.
期刊介绍:
IEEE Electrification Magazine is dedicated to disseminating information on all matters related to microgrids onboard electric vehicles, ships, trains, planes, and off-grid applications. Microgrids refer to an electric network in a car, a ship, a plane or an electric train, which has a limited number of sources and multiple loads. Off-grid applications include small scale electricity supply in areas away from high voltage power networks. Feature articles focus on advanced concepts, technologies, and practices associated with all aspects of electrification in the transportation and off-grid sectors from a technical perspective in synergy with nontechnical areas such as business, environmental, and social concerns.