关于自图形及其补图

IF 1.2 4区 综合性期刊 Q3 MULTIDISCIPLINARY SCIENCES
Karam Ratan Singh , S. Pirzada
{"title":"关于自图形及其补图","authors":"Karam Ratan Singh ,&nbsp;S. Pirzada","doi":"10.1016/j.kjs.2024.100267","DOIUrl":null,"url":null,"abstract":"<div><p>The graphoidal graph <span><math><mi>G</mi></math></span> of graph <span><math><mi>H</mi></math></span> is the graph obtained by taking graphoidal cover <span><math><mi>Ψ</mi></math></span> of <span><math><mi>H</mi></math></span> as vertices and two vertices are adjacent if and only if the corresponding paths have a non-empty intersection. If <span><math><mi>G</mi></math></span> is isomorphic to one of its graphoidal graphs, then <span><math><mi>G</mi></math></span> is said to be a self-graphoidal graph. <span><math><mi>G</mi></math></span> is called self-complementary graphoidal graph if it is isomorphic to one of its complementary graphoidal graphs. In this article, we characterize self-graphoidal graphs and give a construction of self-graphoidal graphs from cycle and wheel graphs. Also, we give a characterization of self-complementary graphoidal graphs.</p></div>","PeriodicalId":17848,"journal":{"name":"Kuwait Journal of Science","volume":"51 4","pages":"Article 100267"},"PeriodicalIF":1.2000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2307410824000920/pdfft?md5=cd72229fa5e87963b32a12a90aa267b4&pid=1-s2.0-S2307410824000920-main.pdf","citationCount":"0","resultStr":"{\"title\":\"On self-graphoidal graphs and their complements\",\"authors\":\"Karam Ratan Singh ,&nbsp;S. Pirzada\",\"doi\":\"10.1016/j.kjs.2024.100267\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The graphoidal graph <span><math><mi>G</mi></math></span> of graph <span><math><mi>H</mi></math></span> is the graph obtained by taking graphoidal cover <span><math><mi>Ψ</mi></math></span> of <span><math><mi>H</mi></math></span> as vertices and two vertices are adjacent if and only if the corresponding paths have a non-empty intersection. If <span><math><mi>G</mi></math></span> is isomorphic to one of its graphoidal graphs, then <span><math><mi>G</mi></math></span> is said to be a self-graphoidal graph. <span><math><mi>G</mi></math></span> is called self-complementary graphoidal graph if it is isomorphic to one of its complementary graphoidal graphs. In this article, we characterize self-graphoidal graphs and give a construction of self-graphoidal graphs from cycle and wheel graphs. Also, we give a characterization of self-complementary graphoidal graphs.</p></div>\",\"PeriodicalId\":17848,\"journal\":{\"name\":\"Kuwait Journal of Science\",\"volume\":\"51 4\",\"pages\":\"Article 100267\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2307410824000920/pdfft?md5=cd72229fa5e87963b32a12a90aa267b4&pid=1-s2.0-S2307410824000920-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kuwait Journal of Science\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2307410824000920\",\"RegionNum\":4,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kuwait Journal of Science","FirstCategoryId":"103","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2307410824000920","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

图 H 的类图形 G 是以 H 的类图形盖 Ψ 为顶点得到的图形,当且仅当对应路径有非空交集时,两个顶点相邻。如果 G 与其中一个图形同构,则称 G 为自图形。如果 G 与其中一个互补图形同构,则称 G 为自互补图形。在本文中,我们将描述自形图的特征,并给出从循环图和车轮图构建自形图的方法。此外,我们还给出了自互补图形的特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On self-graphoidal graphs and their complements

The graphoidal graph G of graph H is the graph obtained by taking graphoidal cover Ψ of H as vertices and two vertices are adjacent if and only if the corresponding paths have a non-empty intersection. If G is isomorphic to one of its graphoidal graphs, then G is said to be a self-graphoidal graph. G is called self-complementary graphoidal graph if it is isomorphic to one of its complementary graphoidal graphs. In this article, we characterize self-graphoidal graphs and give a construction of self-graphoidal graphs from cycle and wheel graphs. Also, we give a characterization of self-complementary graphoidal graphs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Kuwait Journal of Science
Kuwait Journal of Science MULTIDISCIPLINARY SCIENCES-
CiteScore
1.60
自引率
28.60%
发文量
132
期刊介绍: Kuwait Journal of Science (KJS) is indexed and abstracted by major publishing houses such as Chemical Abstract, Science Citation Index, Current contents, Mathematics Abstract, Micribiological Abstracts etc. KJS publishes peer-review articles in various fields of Science including Mathematics, Computer Science, Physics, Statistics, Biology, Chemistry and Earth & Environmental Sciences. In addition, it also aims to bring the results of scientific research carried out under a variety of intellectual traditions and organizations to the attention of specialized scholarly readership. As such, the publisher expects the submission of original manuscripts which contain analysis and solutions about important theoretical, empirical and normative issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信