Sarah C. Baumgarten , Michelle A. Wyatt , Alessandra J. Ainsworth , Bohdana Fedyshyn , Chelsie C. Van Oort , Chandra C. Shenoy , Elizabeth Ann L. Enninga
{"title":"根据周期结果评估冷冻优胚移植过程中的母体全身免疫系统","authors":"Sarah C. Baumgarten , Michelle A. Wyatt , Alessandra J. Ainsworth , Bohdana Fedyshyn , Chelsie C. Van Oort , Chandra C. Shenoy , Elizabeth Ann L. Enninga","doi":"10.1016/j.jri.2024.104261","DOIUrl":null,"url":null,"abstract":"<div><p>Infertility affects 15 % of couples in the US, and many turn to assisted reproductive technologies, including in vitro fertilization and subsequent frozen embryo transfer (FET) to become pregnant. This study aimed to perform a broad assessment of the maternal immune system to determine if there are systemic differences on the day of FET in cycles that result in a live birth compared to those that do not. Women undergoing FET of euploid embryos were recruited and blood was collected on the day of FET as well as at early timepoints in pregnancy. Sixty immune and angiogenic proteins were measured in plasma, and gene expression of 92 immune-response related genes were evaluated in peripheral blood mononuclear cells (PBMCs). We found plasma concentrations of interleukin-13 (IL-13) and macrophage derived chemokine (MDC) were significantly lower on the day of FET in cycles that resulted in a live birth. We also found genes encoding C-C chemokine receptor type 5 (CCR5), CD8 subunit alpha (CD8A) and SMAD family member 3 (SMAD3) were upregulated in PBMCs on the day of FET in cycles that resulted in live birth. Measurements of immune mediators from maternal blood could serve as prognostic markers during FET to guide clinical decision making and further our understanding of implantation failure.</p></div>","PeriodicalId":16963,"journal":{"name":"Journal of Reproductive Immunology","volume":"164 ","pages":"Article 104261"},"PeriodicalIF":2.9000,"publicationDate":"2024-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of the maternal systemic immune system during frozen euploid embryo transfer according to cycle outcome\",\"authors\":\"Sarah C. Baumgarten , Michelle A. Wyatt , Alessandra J. Ainsworth , Bohdana Fedyshyn , Chelsie C. Van Oort , Chandra C. Shenoy , Elizabeth Ann L. Enninga\",\"doi\":\"10.1016/j.jri.2024.104261\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Infertility affects 15 % of couples in the US, and many turn to assisted reproductive technologies, including in vitro fertilization and subsequent frozen embryo transfer (FET) to become pregnant. This study aimed to perform a broad assessment of the maternal immune system to determine if there are systemic differences on the day of FET in cycles that result in a live birth compared to those that do not. Women undergoing FET of euploid embryos were recruited and blood was collected on the day of FET as well as at early timepoints in pregnancy. Sixty immune and angiogenic proteins were measured in plasma, and gene expression of 92 immune-response related genes were evaluated in peripheral blood mononuclear cells (PBMCs). We found plasma concentrations of interleukin-13 (IL-13) and macrophage derived chemokine (MDC) were significantly lower on the day of FET in cycles that resulted in a live birth. We also found genes encoding C-C chemokine receptor type 5 (CCR5), CD8 subunit alpha (CD8A) and SMAD family member 3 (SMAD3) were upregulated in PBMCs on the day of FET in cycles that resulted in live birth. Measurements of immune mediators from maternal blood could serve as prognostic markers during FET to guide clinical decision making and further our understanding of implantation failure.</p></div>\",\"PeriodicalId\":16963,\"journal\":{\"name\":\"Journal of Reproductive Immunology\",\"volume\":\"164 \",\"pages\":\"Article 104261\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Reproductive Immunology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165037824000706\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Reproductive Immunology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165037824000706","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Evaluation of the maternal systemic immune system during frozen euploid embryo transfer according to cycle outcome
Infertility affects 15 % of couples in the US, and many turn to assisted reproductive technologies, including in vitro fertilization and subsequent frozen embryo transfer (FET) to become pregnant. This study aimed to perform a broad assessment of the maternal immune system to determine if there are systemic differences on the day of FET in cycles that result in a live birth compared to those that do not. Women undergoing FET of euploid embryos were recruited and blood was collected on the day of FET as well as at early timepoints in pregnancy. Sixty immune and angiogenic proteins were measured in plasma, and gene expression of 92 immune-response related genes were evaluated in peripheral blood mononuclear cells (PBMCs). We found plasma concentrations of interleukin-13 (IL-13) and macrophage derived chemokine (MDC) were significantly lower on the day of FET in cycles that resulted in a live birth. We also found genes encoding C-C chemokine receptor type 5 (CCR5), CD8 subunit alpha (CD8A) and SMAD family member 3 (SMAD3) were upregulated in PBMCs on the day of FET in cycles that resulted in live birth. Measurements of immune mediators from maternal blood could serve as prognostic markers during FET to guide clinical decision making and further our understanding of implantation failure.
期刊介绍:
Affiliated with the European Society of Reproductive Immunology and with the International Society for Immunology of Reproduction
The aim of the Journal of Reproductive Immunology is to provide the critical forum for the dissemination of results from high quality research in all aspects of experimental, animal and clinical reproductive immunobiology.
This encompasses normal and pathological processes of:
* Male and Female Reproductive Tracts
* Gametogenesis and Embryogenesis
* Implantation and Placental Development
* Gestation and Parturition
* Mammary Gland and Lactation.