S. Kamonwannasit, C. Futalan, P. Khemthong, Saran Youngjan, P. Phatai
{"title":"用共沉淀法制备的铈铜混合氧化物的抗菌活性和二氧化碳捕获能力","authors":"S. Kamonwannasit, C. Futalan, P. Khemthong, Saran Youngjan, P. Phatai","doi":"10.22146/ijc.88872","DOIUrl":null,"url":null,"abstract":"Indoor air pollution is comprised of fine particles, bacteria, fungi, and hydrocarbons. Acceptable indoor air quality is maintained using several layers of air filters. Alternative materials with the capacity to remove CO2 from indoor air with antibacterial efficacy need to be further investigated. Mixed oxides of Ce1.0-xCuxO (x = 0.0, 0.1, 0.5, 0.9, 1.0) were synthesized using a co-precipitation method. Characterization studies revealed that single oxides of Ce1.0O and Cu1.0O were of cubic fluorite and monoclinic crystal structures, respectively. Results also show that Ce0.1Cu0.9O and Ce0.5Cu0.5O were composites. All samples were classified as mesoporous materials with a type IV isotherm, and the main functional group was identified as Ce–O–Cu. The surface area of Ce0.5Cu0.5O was 17.63 m2/g. The highest CO2 adsorption capacity was 5.72 cm3/g for Ce0.5Cu0.5O. Moreover, the greatest antibacterial activity against B. subtilis (12.22 mm inhibition zone) and P. aeruginosa (7.34 mm inhibition zone) was observed for Ce0.5Cu0.5O at a 30 mg/L concentration. The synthesis of mixed Ce1.0-xCuxO oxides along with their satisfactory antibacterial performance and CO2 adsorption capacity, indicate its potential use as an alternative material for inclusion in indoor air filters.","PeriodicalId":13515,"journal":{"name":"Indonesian Journal of Chemistry","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Antibacterial Activity and CO2 Capture by Cerium-Copper Mixed Oxides Prepared Using a Co-precipitation Method\",\"authors\":\"S. Kamonwannasit, C. Futalan, P. Khemthong, Saran Youngjan, P. Phatai\",\"doi\":\"10.22146/ijc.88872\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Indoor air pollution is comprised of fine particles, bacteria, fungi, and hydrocarbons. Acceptable indoor air quality is maintained using several layers of air filters. Alternative materials with the capacity to remove CO2 from indoor air with antibacterial efficacy need to be further investigated. Mixed oxides of Ce1.0-xCuxO (x = 0.0, 0.1, 0.5, 0.9, 1.0) were synthesized using a co-precipitation method. Characterization studies revealed that single oxides of Ce1.0O and Cu1.0O were of cubic fluorite and monoclinic crystal structures, respectively. Results also show that Ce0.1Cu0.9O and Ce0.5Cu0.5O were composites. All samples were classified as mesoporous materials with a type IV isotherm, and the main functional group was identified as Ce–O–Cu. The surface area of Ce0.5Cu0.5O was 17.63 m2/g. The highest CO2 adsorption capacity was 5.72 cm3/g for Ce0.5Cu0.5O. Moreover, the greatest antibacterial activity against B. subtilis (12.22 mm inhibition zone) and P. aeruginosa (7.34 mm inhibition zone) was observed for Ce0.5Cu0.5O at a 30 mg/L concentration. The synthesis of mixed Ce1.0-xCuxO oxides along with their satisfactory antibacterial performance and CO2 adsorption capacity, indicate its potential use as an alternative material for inclusion in indoor air filters.\",\"PeriodicalId\":13515,\"journal\":{\"name\":\"Indonesian Journal of Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indonesian Journal of Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22146/ijc.88872\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indonesian Journal of Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22146/ijc.88872","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
室内空气污染由微粒、细菌、真菌和碳氢化合物组成。可接受的室内空气质量是通过多层空气过滤器来维持的。需要进一步研究能够去除室内空气中二氧化碳并具有抗菌功效的替代材料。采用共沉淀法合成了 Ce1.0-xCuxO(x = 0.0、0.1、0.5、0.9、1.0)的混合氧化物。表征研究表明,Ce1.0O 和 Cu1.0O 的单氧化物分别具有立方萤石和单斜晶体结构。结果还显示,Ce0.1Cu0.9O 和 Ce0.5Cu0.5O 为复合材料。所有样品都被归类为介孔材料,具有 IV 型等温线,主要官能团被确定为 Ce-O-Cu。Ce0.5Cu0.5O 的表面积为 17.63 m2/g。Ce0.5Cu0.5O 的最高二氧化碳吸附容量为 5.72 cm3/g。此外,浓度为 30 mg/L 的 Ce0.5Cu0.5O 对枯草杆菌(12.22 mm 抑菌区)和绿脓杆菌(7.34 mm 抑菌区)的抗菌活性最高。混合 Ce1.0-xCuxO 氧化物的合成及其令人满意的抗菌性能和二氧化碳吸附能力表明,它有可能用作室内空气过滤器的替代材料。
Antibacterial Activity and CO2 Capture by Cerium-Copper Mixed Oxides Prepared Using a Co-precipitation Method
Indoor air pollution is comprised of fine particles, bacteria, fungi, and hydrocarbons. Acceptable indoor air quality is maintained using several layers of air filters. Alternative materials with the capacity to remove CO2 from indoor air with antibacterial efficacy need to be further investigated. Mixed oxides of Ce1.0-xCuxO (x = 0.0, 0.1, 0.5, 0.9, 1.0) were synthesized using a co-precipitation method. Characterization studies revealed that single oxides of Ce1.0O and Cu1.0O were of cubic fluorite and monoclinic crystal structures, respectively. Results also show that Ce0.1Cu0.9O and Ce0.5Cu0.5O were composites. All samples were classified as mesoporous materials with a type IV isotherm, and the main functional group was identified as Ce–O–Cu. The surface area of Ce0.5Cu0.5O was 17.63 m2/g. The highest CO2 adsorption capacity was 5.72 cm3/g for Ce0.5Cu0.5O. Moreover, the greatest antibacterial activity against B. subtilis (12.22 mm inhibition zone) and P. aeruginosa (7.34 mm inhibition zone) was observed for Ce0.5Cu0.5O at a 30 mg/L concentration. The synthesis of mixed Ce1.0-xCuxO oxides along with their satisfactory antibacterial performance and CO2 adsorption capacity, indicate its potential use as an alternative material for inclusion in indoor air filters.
期刊介绍:
Indonesian Journal of Chemistry is a peer-reviewed, open access journal that publishes original research articles, review articles, as well as short communication in all areas of chemistry, including educational chemistry, applied chemistry, and chemical engineering.