Keisuke Yoshida, Hiroshi Yajima, Md. Touhidul Islam, Shijun Pan
{"title":"日本朝日川潮汐河段两栖鲶鱼(Plecoglossus altivelis)产卵栖息地适宜性评估:对保护和恢复的影响","authors":"Keisuke Yoshida, Hiroshi Yajima, Md. Touhidul Islam, Shijun Pan","doi":"10.1002/rra.4329","DOIUrl":null,"url":null,"abstract":"The Amphidromous Ayu (Plecoglossus altivelis), vital for Japan's riverine commercial fisheries, is experiencing population decline due to habitat degradation. In response, Japan is implementing restoration efforts by releasing juvenile fish and cultivating spawning habitats. This study, focusing on the Asahi River's Heidan area, evaluates Ayu spawning habitat suitability, especially in tidal zones, and its conservation implications. Through field surveys and numerical analysis, the research identifies optimal conditions for spawning amid dwindling numbers. Observations from the 2020 peak spawning season showed that water temperatures below 20°C are conducive to spawning, with the best sites producing up to 48,817 eggs/m2. Gravel sizes between 0.85 and 53.0 mm were identified as crucial for effective spawning. Notably, artificial spawning grounds established in 2019 showed no spawning activity, likely due to saline intrusion from tides. Using the three‐dimensional hydrodynamic‐aquatic ecosystem numerical model, the study assesses flow, substrate, and water quality's impact on spawning, corroborated by sensor data. A key finding is the negative correlation between salinity and egg density in tidal sections of the Asahi River. Furthermore, an artificial intelligence (AI)‐based YOLOv5 model, trained on underwater images, effectively detected Ayu aggregations, demonstrating an F1‐score of 0.757 in differentiating Ayu from other coexisting fish species in the same aquatic environment. This AI approach provides a nonintrusive method for monitoring Ayu populations and habitat preferences. The research underlines that successful spawning habitats require minimal saline intrusion, with optimal salinity and flow conditions. These insights are critical for spawning ground development, emphasizing the management of tidal effects and riverbed conditions to bolster Ayu populations and preserve aquatic ecosystems.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessment of spawning habitat suitability for Amphidromous Ayu (Plecoglossus altivelis) in tidal Asahi River sections in Japan: Implications for conservation and restoration\",\"authors\":\"Keisuke Yoshida, Hiroshi Yajima, Md. Touhidul Islam, Shijun Pan\",\"doi\":\"10.1002/rra.4329\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Amphidromous Ayu (Plecoglossus altivelis), vital for Japan's riverine commercial fisheries, is experiencing population decline due to habitat degradation. In response, Japan is implementing restoration efforts by releasing juvenile fish and cultivating spawning habitats. This study, focusing on the Asahi River's Heidan area, evaluates Ayu spawning habitat suitability, especially in tidal zones, and its conservation implications. Through field surveys and numerical analysis, the research identifies optimal conditions for spawning amid dwindling numbers. Observations from the 2020 peak spawning season showed that water temperatures below 20°C are conducive to spawning, with the best sites producing up to 48,817 eggs/m2. Gravel sizes between 0.85 and 53.0 mm were identified as crucial for effective spawning. Notably, artificial spawning grounds established in 2019 showed no spawning activity, likely due to saline intrusion from tides. Using the three‐dimensional hydrodynamic‐aquatic ecosystem numerical model, the study assesses flow, substrate, and water quality's impact on spawning, corroborated by sensor data. A key finding is the negative correlation between salinity and egg density in tidal sections of the Asahi River. Furthermore, an artificial intelligence (AI)‐based YOLOv5 model, trained on underwater images, effectively detected Ayu aggregations, demonstrating an F1‐score of 0.757 in differentiating Ayu from other coexisting fish species in the same aquatic environment. This AI approach provides a nonintrusive method for monitoring Ayu populations and habitat preferences. The research underlines that successful spawning habitats require minimal saline intrusion, with optimal salinity and flow conditions. These insights are critical for spawning ground development, emphasizing the management of tidal effects and riverbed conditions to bolster Ayu populations and preserve aquatic ecosystems.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1002/rra.4329\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1002/rra.4329","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Assessment of spawning habitat suitability for Amphidromous Ayu (Plecoglossus altivelis) in tidal Asahi River sections in Japan: Implications for conservation and restoration
The Amphidromous Ayu (Plecoglossus altivelis), vital for Japan's riverine commercial fisheries, is experiencing population decline due to habitat degradation. In response, Japan is implementing restoration efforts by releasing juvenile fish and cultivating spawning habitats. This study, focusing on the Asahi River's Heidan area, evaluates Ayu spawning habitat suitability, especially in tidal zones, and its conservation implications. Through field surveys and numerical analysis, the research identifies optimal conditions for spawning amid dwindling numbers. Observations from the 2020 peak spawning season showed that water temperatures below 20°C are conducive to spawning, with the best sites producing up to 48,817 eggs/m2. Gravel sizes between 0.85 and 53.0 mm were identified as crucial for effective spawning. Notably, artificial spawning grounds established in 2019 showed no spawning activity, likely due to saline intrusion from tides. Using the three‐dimensional hydrodynamic‐aquatic ecosystem numerical model, the study assesses flow, substrate, and water quality's impact on spawning, corroborated by sensor data. A key finding is the negative correlation between salinity and egg density in tidal sections of the Asahi River. Furthermore, an artificial intelligence (AI)‐based YOLOv5 model, trained on underwater images, effectively detected Ayu aggregations, demonstrating an F1‐score of 0.757 in differentiating Ayu from other coexisting fish species in the same aquatic environment. This AI approach provides a nonintrusive method for monitoring Ayu populations and habitat preferences. The research underlines that successful spawning habitats require minimal saline intrusion, with optimal salinity and flow conditions. These insights are critical for spawning ground development, emphasizing the management of tidal effects and riverbed conditions to bolster Ayu populations and preserve aquatic ecosystems.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.