用于奥氏体回火球墨铸铁(ADI)硬度预测的遗传算法(GA)-反向传播(BP)网络方法

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Pengchun Li, Yuzhou Du, Min Zhang, Qian Yang, Chen Liu, Xin Wang, Ruochen Zhang, Bailing Jiang
{"title":"用于奥氏体回火球墨铸铁(ADI)硬度预测的遗传算法(GA)-反向传播(BP)网络方法","authors":"Pengchun Li, Yuzhou Du, Min Zhang, Qian Yang, Chen Liu, Xin Wang, Ruochen Zhang, Bailing Jiang","doi":"10.1177/02670836241255240","DOIUrl":null,"url":null,"abstract":"Hardness serves as a crucial indicator for assessing the success of quenching treatment in the steel and iron industry, impacting the processability and wear properties of materials. In the present study, a dataset comprising 125 hardness values of the QT500-7 sample subjected to various austempering heat treatment parameters was utilised to train a neural network model for predicting the hardness of austempered ductile iron (ADI). The established model based on a genetic algorithm and error backpropagation algorithm demonstrates high accuracy in predicting the hardness of ADI if given heat treatment parameters. The mean square error of the model was about 1.019, indicating the reliability and precision of the model in predicting the hardness of ADI based on the specified heat treatment parameters.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":"16 3","pages":""},"PeriodicalIF":16.4000,"publicationDate":"2024-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genetic algorithm (GA)–backpropagation (BP) network approach for hardness prediction of austempered ductile iron (ADI)\",\"authors\":\"Pengchun Li, Yuzhou Du, Min Zhang, Qian Yang, Chen Liu, Xin Wang, Ruochen Zhang, Bailing Jiang\",\"doi\":\"10.1177/02670836241255240\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hardness serves as a crucial indicator for assessing the success of quenching treatment in the steel and iron industry, impacting the processability and wear properties of materials. In the present study, a dataset comprising 125 hardness values of the QT500-7 sample subjected to various austempering heat treatment parameters was utilised to train a neural network model for predicting the hardness of austempered ductile iron (ADI). The established model based on a genetic algorithm and error backpropagation algorithm demonstrates high accuracy in predicting the hardness of ADI if given heat treatment parameters. The mean square error of the model was about 1.019, indicating the reliability and precision of the model in predicting the hardness of ADI based on the specified heat treatment parameters.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":\"16 3\",\"pages\":\"\"},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1177/02670836241255240\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/02670836241255240","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在钢铁工业中,硬度是评估淬火处理成功与否的重要指标,影响着材料的加工性能和磨损性能。在本研究中,利用由 125 个经过不同奥氏体回火热处理参数处理的 QT500-7 样品硬度值组成的数据集,训练了一个预测奥氏体回火球墨铸铁 (ADI) 硬度的神经网络模型。在给定热处理参数的情况下,基于遗传算法和误差反向传播算法建立的模型在预测 ADI 硬度方面表现出很高的准确性。该模型的均方误差约为 1.019,表明该模型在根据指定的热处理参数预测 ADI 硬度方面的可靠性和精确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Genetic algorithm (GA)–backpropagation (BP) network approach for hardness prediction of austempered ductile iron (ADI)
Hardness serves as a crucial indicator for assessing the success of quenching treatment in the steel and iron industry, impacting the processability and wear properties of materials. In the present study, a dataset comprising 125 hardness values of the QT500-7 sample subjected to various austempering heat treatment parameters was utilised to train a neural network model for predicting the hardness of austempered ductile iron (ADI). The established model based on a genetic algorithm and error backpropagation algorithm demonstrates high accuracy in predicting the hardness of ADI if given heat treatment parameters. The mean square error of the model was about 1.019, indicating the reliability and precision of the model in predicting the hardness of ADI based on the specified heat treatment parameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信