Anfisa Ayalon, Fidaa El Zhalka, Alexander Rubowitz, P. Roy, S. Shoval, I. Legchenkova, E. Bormashenko
{"title":"全氟碳化物液体对视网膜表面的润湿:在视网膜脱离手术中用作内填塞剂和术中工具的意义","authors":"Anfisa Ayalon, Fidaa El Zhalka, Alexander Rubowitz, P. Roy, S. Shoval, I. Legchenkova, E. Bormashenko","doi":"10.1680/jsuin.24.00035","DOIUrl":null,"url":null,"abstract":"Perfluorocarbon liquids (PFCLs) are essential in ophthalmology due to their unique properties, such as higher density than water, inert chemical nature, and optical transparency. They serve as crucial tools in retinal detachment surgery, acting as both intraoperative aids and short-term tamponade agents. However, the interactions between PFCLs and the retinal surface are not fully understood, limiting insights into potential complications. This study investigates the interfacial interaction between perfluorodecalin (PFCL) and the retinal surface. Wetting behavior of animal retinas by water and PFCL was analyzed, revealing water droplets’ floating phenomenon in PFCL and calculating the critical radius for this effect. Dynamics of water spreading over the retina were examined. A model experiment demonstrated that water’s tendency to float over PFCL, interacting with a hydrophilic surface like the retina, could create traction and damage the retinal surface. These findings enhance our comprehension of physical processes at the PFCL/retina interface and offer practical insights for improving ophthalmic surgical procedures.","PeriodicalId":22032,"journal":{"name":"Surface Innovations","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wetting of the retinal surface by perfluorocarbon liquid: implications for its use as an endotamponade agent and intraoperative tool in retinal detachment surgery\",\"authors\":\"Anfisa Ayalon, Fidaa El Zhalka, Alexander Rubowitz, P. Roy, S. Shoval, I. Legchenkova, E. Bormashenko\",\"doi\":\"10.1680/jsuin.24.00035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Perfluorocarbon liquids (PFCLs) are essential in ophthalmology due to their unique properties, such as higher density than water, inert chemical nature, and optical transparency. They serve as crucial tools in retinal detachment surgery, acting as both intraoperative aids and short-term tamponade agents. However, the interactions between PFCLs and the retinal surface are not fully understood, limiting insights into potential complications. This study investigates the interfacial interaction between perfluorodecalin (PFCL) and the retinal surface. Wetting behavior of animal retinas by water and PFCL was analyzed, revealing water droplets’ floating phenomenon in PFCL and calculating the critical radius for this effect. Dynamics of water spreading over the retina were examined. A model experiment demonstrated that water’s tendency to float over PFCL, interacting with a hydrophilic surface like the retina, could create traction and damage the retinal surface. These findings enhance our comprehension of physical processes at the PFCL/retina interface and offer practical insights for improving ophthalmic surgical procedures.\",\"PeriodicalId\":22032,\"journal\":{\"name\":\"Surface Innovations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surface Innovations\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1680/jsuin.24.00035\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Innovations","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1680/jsuin.24.00035","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Wetting of the retinal surface by perfluorocarbon liquid: implications for its use as an endotamponade agent and intraoperative tool in retinal detachment surgery
Perfluorocarbon liquids (PFCLs) are essential in ophthalmology due to their unique properties, such as higher density than water, inert chemical nature, and optical transparency. They serve as crucial tools in retinal detachment surgery, acting as both intraoperative aids and short-term tamponade agents. However, the interactions between PFCLs and the retinal surface are not fully understood, limiting insights into potential complications. This study investigates the interfacial interaction between perfluorodecalin (PFCL) and the retinal surface. Wetting behavior of animal retinas by water and PFCL was analyzed, revealing water droplets’ floating phenomenon in PFCL and calculating the critical radius for this effect. Dynamics of water spreading over the retina were examined. A model experiment demonstrated that water’s tendency to float over PFCL, interacting with a hydrophilic surface like the retina, could create traction and damage the retinal surface. These findings enhance our comprehension of physical processes at the PFCL/retina interface and offer practical insights for improving ophthalmic surgical procedures.
Surface InnovationsCHEMISTRY, PHYSICALMATERIALS SCIENCE, COAT-MATERIALS SCIENCE, COATINGS & FILMS
CiteScore
5.80
自引率
22.90%
发文量
66
期刊介绍:
The material innovations on surfaces, combined with understanding and manipulation of physics and chemistry of functional surfaces and coatings, have exploded in the past decade at an incredibly rapid pace.
Superhydrophobicity, superhydrophlicity, self-cleaning, self-healing, anti-fouling, anti-bacterial, etc., have become important fundamental topics of surface science research community driven by curiosity of physics, chemistry, and biology of interaction phenomenon at surfaces and their enormous potential in practical applications. Materials having controlled-functionality surfaces and coatings are important to the manufacturing of new products for environmental control, liquid manipulation, nanotechnological advances, biomedical engineering, pharmacy, biotechnology, and many others, and are part of the most promising technological innovations of the twenty-first century.