关于 k $k$ 树的子 k $k$ 树的最大局部平均阶数

Pub Date : 2024-06-02 DOI:10.1002/jgt.23128
Zhuo Li, Tianlong Ma, Fengming Dong, Xian'an Jin
{"title":"关于 k $k$ 树的子 k $k$ 树的最大局部平均阶数","authors":"Zhuo Li,&nbsp;Tianlong Ma,&nbsp;Fengming Dong,&nbsp;Xian'an Jin","doi":"10.1002/jgt.23128","DOIUrl":null,"url":null,"abstract":"<p>For a <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math>-tree <span></span><math>\n <semantics>\n <mrow>\n <mi>T</mi>\n </mrow>\n <annotation> $T$</annotation>\n </semantics></math>, a generalization of a tree, the local mean order of sub-<span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math>-trees of <span></span><math>\n <semantics>\n <mrow>\n <mi>T</mi>\n </mrow>\n <annotation> $T$</annotation>\n </semantics></math> is the average order of sub-<span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math>-trees of <span></span><math>\n <semantics>\n <mrow>\n <mi>T</mi>\n </mrow>\n <annotation> $T$</annotation>\n </semantics></math> containing a given <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math>-clique. The problem whether the maximum local mean order of a tree (i.e., a 1-tree) at a vertex is always taken on at a leaf was asked by Jamison in 1984 and was answered by Wagner and Wang in 2016. Actually, they proved that the maximum local mean order of a tree at a vertex occurs either at a leaf or at a vertex of degree 2. In 2018, Stephens and Oellermann asked a similar problem: for any <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math>-tree <span></span><math>\n <semantics>\n <mrow>\n <mi>T</mi>\n </mrow>\n <annotation> $T$</annotation>\n </semantics></math>, does the maximum local mean order of sub-<span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math>-trees containing a given <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math>-clique occur at a <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math>-clique that is not a major <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math>-clique of <span></span><math>\n <semantics>\n <mrow>\n <mi>T</mi>\n </mrow>\n <annotation> $T$</annotation>\n </semantics></math>? In this paper, we give it an affirmative answer.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the maximum local mean order of sub-\\n \\n \\n k\\n \\n $k$\\n -trees of a \\n \\n \\n k\\n \\n $k$\\n -tree\",\"authors\":\"Zhuo Li,&nbsp;Tianlong Ma,&nbsp;Fengming Dong,&nbsp;Xian'an Jin\",\"doi\":\"10.1002/jgt.23128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For a <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n <annotation> $k$</annotation>\\n </semantics></math>-tree <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>T</mi>\\n </mrow>\\n <annotation> $T$</annotation>\\n </semantics></math>, a generalization of a tree, the local mean order of sub-<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n <annotation> $k$</annotation>\\n </semantics></math>-trees of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>T</mi>\\n </mrow>\\n <annotation> $T$</annotation>\\n </semantics></math> is the average order of sub-<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n <annotation> $k$</annotation>\\n </semantics></math>-trees of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>T</mi>\\n </mrow>\\n <annotation> $T$</annotation>\\n </semantics></math> containing a given <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n <annotation> $k$</annotation>\\n </semantics></math>-clique. The problem whether the maximum local mean order of a tree (i.e., a 1-tree) at a vertex is always taken on at a leaf was asked by Jamison in 1984 and was answered by Wagner and Wang in 2016. Actually, they proved that the maximum local mean order of a tree at a vertex occurs either at a leaf or at a vertex of degree 2. In 2018, Stephens and Oellermann asked a similar problem: for any <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n <annotation> $k$</annotation>\\n </semantics></math>-tree <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>T</mi>\\n </mrow>\\n <annotation> $T$</annotation>\\n </semantics></math>, does the maximum local mean order of sub-<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n <annotation> $k$</annotation>\\n </semantics></math>-trees containing a given <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n <annotation> $k$</annotation>\\n </semantics></math>-clique occur at a <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n <annotation> $k$</annotation>\\n </semantics></math>-clique that is not a major <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n <annotation> $k$</annotation>\\n </semantics></math>-clique of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>T</mi>\\n </mrow>\\n <annotation> $T$</annotation>\\n </semantics></math>? In this paper, we give it an affirmative answer.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23128\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于一棵树(树的一种概括)来说,其子树的局部平均阶数是包含给定clique的子树的平均阶数。杰米森(Jamison)于 1984 年提出了一棵树(即一棵树)在顶点的最大局部平均阶是否总是在叶子上的问题,瓦格纳(Wagner)和王(Wang)于 2016 年回答了这个问题。实际上,他们证明了一棵树在顶点处的最大局部平均阶要么出现在叶子处,要么出现在阶数为 2 的顶点处。2018 年,Stephens 和 Oellermann 提出了一个类似的问题:对于任意一棵树,包含给定-clique 的子树的最大局部平均阶是否出现在一个不是其主要-clique 的-clique 处?在本文中,我们给出了肯定的答案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On the maximum local mean order of sub- k $k$ -trees of a k $k$ -tree

For a k $k$ -tree T $T$ , a generalization of a tree, the local mean order of sub- k $k$ -trees of T $T$ is the average order of sub- k $k$ -trees of T $T$ containing a given k $k$ -clique. The problem whether the maximum local mean order of a tree (i.e., a 1-tree) at a vertex is always taken on at a leaf was asked by Jamison in 1984 and was answered by Wagner and Wang in 2016. Actually, they proved that the maximum local mean order of a tree at a vertex occurs either at a leaf or at a vertex of degree 2. In 2018, Stephens and Oellermann asked a similar problem: for any k $k$ -tree T $T$ , does the maximum local mean order of sub- k $k$ -trees containing a given k $k$ -clique occur at a k $k$ -clique that is not a major k $k$ -clique of T $T$ ? In this paper, we give it an affirmative answer.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信