关于 k $k$ 树的子 k $k$ 树的最大局部平均阶数

IF 0.9 3区 数学 Q2 MATHEMATICS
Zhuo Li, Tianlong Ma, Fengming Dong, Xian'an Jin
{"title":"关于 k $k$ 树的子 k $k$ 树的最大局部平均阶数","authors":"Zhuo Li,&nbsp;Tianlong Ma,&nbsp;Fengming Dong,&nbsp;Xian'an Jin","doi":"10.1002/jgt.23128","DOIUrl":null,"url":null,"abstract":"<p>For a <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math>-tree <span></span><math>\n <semantics>\n <mrow>\n <mi>T</mi>\n </mrow>\n <annotation> $T$</annotation>\n </semantics></math>, a generalization of a tree, the local mean order of sub-<span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math>-trees of <span></span><math>\n <semantics>\n <mrow>\n <mi>T</mi>\n </mrow>\n <annotation> $T$</annotation>\n </semantics></math> is the average order of sub-<span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math>-trees of <span></span><math>\n <semantics>\n <mrow>\n <mi>T</mi>\n </mrow>\n <annotation> $T$</annotation>\n </semantics></math> containing a given <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math>-clique. The problem whether the maximum local mean order of a tree (i.e., a 1-tree) at a vertex is always taken on at a leaf was asked by Jamison in 1984 and was answered by Wagner and Wang in 2016. Actually, they proved that the maximum local mean order of a tree at a vertex occurs either at a leaf or at a vertex of degree 2. In 2018, Stephens and Oellermann asked a similar problem: for any <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math>-tree <span></span><math>\n <semantics>\n <mrow>\n <mi>T</mi>\n </mrow>\n <annotation> $T$</annotation>\n </semantics></math>, does the maximum local mean order of sub-<span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math>-trees containing a given <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math>-clique occur at a <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math>-clique that is not a major <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math>-clique of <span></span><math>\n <semantics>\n <mrow>\n <mi>T</mi>\n </mrow>\n <annotation> $T$</annotation>\n </semantics></math>? In this paper, we give it an affirmative answer.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"107 2","pages":"393-409"},"PeriodicalIF":0.9000,"publicationDate":"2024-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the maximum local mean order of sub-\\n \\n \\n k\\n \\n $k$\\n -trees of a \\n \\n \\n k\\n \\n $k$\\n -tree\",\"authors\":\"Zhuo Li,&nbsp;Tianlong Ma,&nbsp;Fengming Dong,&nbsp;Xian'an Jin\",\"doi\":\"10.1002/jgt.23128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For a <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n <annotation> $k$</annotation>\\n </semantics></math>-tree <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>T</mi>\\n </mrow>\\n <annotation> $T$</annotation>\\n </semantics></math>, a generalization of a tree, the local mean order of sub-<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n <annotation> $k$</annotation>\\n </semantics></math>-trees of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>T</mi>\\n </mrow>\\n <annotation> $T$</annotation>\\n </semantics></math> is the average order of sub-<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n <annotation> $k$</annotation>\\n </semantics></math>-trees of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>T</mi>\\n </mrow>\\n <annotation> $T$</annotation>\\n </semantics></math> containing a given <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n <annotation> $k$</annotation>\\n </semantics></math>-clique. The problem whether the maximum local mean order of a tree (i.e., a 1-tree) at a vertex is always taken on at a leaf was asked by Jamison in 1984 and was answered by Wagner and Wang in 2016. Actually, they proved that the maximum local mean order of a tree at a vertex occurs either at a leaf or at a vertex of degree 2. In 2018, Stephens and Oellermann asked a similar problem: for any <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n <annotation> $k$</annotation>\\n </semantics></math>-tree <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>T</mi>\\n </mrow>\\n <annotation> $T$</annotation>\\n </semantics></math>, does the maximum local mean order of sub-<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n <annotation> $k$</annotation>\\n </semantics></math>-trees containing a given <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n <annotation> $k$</annotation>\\n </semantics></math>-clique occur at a <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n <annotation> $k$</annotation>\\n </semantics></math>-clique that is not a major <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n <annotation> $k$</annotation>\\n </semantics></math>-clique of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>T</mi>\\n </mrow>\\n <annotation> $T$</annotation>\\n </semantics></math>? In this paper, we give it an affirmative answer.</p>\",\"PeriodicalId\":16014,\"journal\":{\"name\":\"Journal of Graph Theory\",\"volume\":\"107 2\",\"pages\":\"393-409\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Graph Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23128\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23128","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于一棵树(树的一种概括)来说,其子树的局部平均阶数是包含给定clique的子树的平均阶数。杰米森(Jamison)于 1984 年提出了一棵树(即一棵树)在顶点的最大局部平均阶是否总是在叶子上的问题,瓦格纳(Wagner)和王(Wang)于 2016 年回答了这个问题。实际上,他们证明了一棵树在顶点处的最大局部平均阶要么出现在叶子处,要么出现在阶数为 2 的顶点处。2018 年,Stephens 和 Oellermann 提出了一个类似的问题:对于任意一棵树,包含给定-clique 的子树的最大局部平均阶是否出现在一个不是其主要-clique 的-clique 处?在本文中,我们给出了肯定的答案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the maximum local mean order of sub- k $k$ -trees of a k $k$ -tree

For a k $k$ -tree T $T$ , a generalization of a tree, the local mean order of sub- k $k$ -trees of T $T$ is the average order of sub- k $k$ -trees of T $T$ containing a given k $k$ -clique. The problem whether the maximum local mean order of a tree (i.e., a 1-tree) at a vertex is always taken on at a leaf was asked by Jamison in 1984 and was answered by Wagner and Wang in 2016. Actually, they proved that the maximum local mean order of a tree at a vertex occurs either at a leaf or at a vertex of degree 2. In 2018, Stephens and Oellermann asked a similar problem: for any k $k$ -tree T $T$ , does the maximum local mean order of sub- k $k$ -trees containing a given k $k$ -clique occur at a k $k$ -clique that is not a major k $k$ -clique of T $T$ ? In this paper, we give it an affirmative answer.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Graph Theory
Journal of Graph Theory 数学-数学
CiteScore
1.60
自引率
22.20%
发文量
130
审稿时长
6-12 weeks
期刊介绍: The Journal of Graph Theory is devoted to a variety of topics in graph theory, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences. A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信