作为液位传感器的全印刷 PTC 传热传感器阵列

Rainer Bäuerle, Pariya Nazari, Johannes Zimmermann, Christian Melzer, Gerardo Hernandez‐Sosa, Wolfgang Kowalsky
{"title":"作为液位传感器的全印刷 PTC 传热传感器阵列","authors":"Rainer Bäuerle, Pariya Nazari, Johannes Zimmermann, Christian Melzer, Gerardo Hernandez‐Sosa, Wolfgang Kowalsky","doi":"10.1002/adsr.202400060","DOIUrl":null,"url":null,"abstract":"Liquid levels must be monitored in almost any process involving liquids. Most level sensors are mounted inside the vessel containing the liquid. Herein, a fully screen‐printed level sensor is demonstrated for external use. It consists of a vertical array of 16 pixels, each comprising a voltage divider of a positive temperature coefficient (PTC) element and a shunt resistor. The self‐regulating PTC elements are heated with constant voltage. Heat flow out of the PTCs dictate their resistances and enables inference about their thermal surrounding. Water in a polypropylene container changes voltage levels by (33 ± 2) % compared to air. Applications with a glass container and household oil instead of water are also successfully tested. Both liquids yield a distinctive difference in signal and the sensor determines the height of the oil/water interface as well as the surfaces of the liquid. To further demonstrate the capabilities of the sensor, segregation of a water‐oil mixture, slowed by a mixing agent, is observed in real time. This work offers an adaptable and simple alternative for external level sensing.","PeriodicalId":100037,"journal":{"name":"Advanced Sensor Research","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fully Printed PTC Based Heat Transfer Sensor Array as Liquid Level Sensor\",\"authors\":\"Rainer Bäuerle, Pariya Nazari, Johannes Zimmermann, Christian Melzer, Gerardo Hernandez‐Sosa, Wolfgang Kowalsky\",\"doi\":\"10.1002/adsr.202400060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Liquid levels must be monitored in almost any process involving liquids. Most level sensors are mounted inside the vessel containing the liquid. Herein, a fully screen‐printed level sensor is demonstrated for external use. It consists of a vertical array of 16 pixels, each comprising a voltage divider of a positive temperature coefficient (PTC) element and a shunt resistor. The self‐regulating PTC elements are heated with constant voltage. Heat flow out of the PTCs dictate their resistances and enables inference about their thermal surrounding. Water in a polypropylene container changes voltage levels by (33 ± 2) % compared to air. Applications with a glass container and household oil instead of water are also successfully tested. Both liquids yield a distinctive difference in signal and the sensor determines the height of the oil/water interface as well as the surfaces of the liquid. To further demonstrate the capabilities of the sensor, segregation of a water‐oil mixture, slowed by a mixing agent, is observed in real time. This work offers an adaptable and simple alternative for external level sensing.\",\"PeriodicalId\":100037,\"journal\":{\"name\":\"Advanced Sensor Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Sensor Research\",\"FirstCategoryId\":\"0\",\"ListUrlMain\":\"https://doi.org/10.1002/adsr.202400060\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Sensor Research","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.1002/adsr.202400060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

几乎所有涉及液体的过程都必须监控液位。大多数液位传感器都安装在装有液体的容器内。这里展示的是一种完全丝网印刷的液位传感器,可在外部使用。它由 16 个像素组成的垂直阵列构成,每个像素由一个正温度系数 (PTC) 元件和一个分流电阻组成的分压器构成。自调节 PTC 元件通过恒定电压加热。PTC 元件流出的热量决定了它们的电阻值,从而可以推断出它们周围的热环境。与空气相比,聚丙烯容器中的水会改变电压水平 (33 ± 2) %。此外,还成功测试了用玻璃容器和家用油代替水的应用。两种液体产生的信号差异明显,传感器可确定油/水界面以及液体表面的高度。为了进一步证明传感器的能力,还实时观察了水油混合物在混合剂作用下的分离情况。这项工作为外部液位传感提供了一种适应性强且简单的替代方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fully Printed PTC Based Heat Transfer Sensor Array as Liquid Level Sensor
Liquid levels must be monitored in almost any process involving liquids. Most level sensors are mounted inside the vessel containing the liquid. Herein, a fully screen‐printed level sensor is demonstrated for external use. It consists of a vertical array of 16 pixels, each comprising a voltage divider of a positive temperature coefficient (PTC) element and a shunt resistor. The self‐regulating PTC elements are heated with constant voltage. Heat flow out of the PTCs dictate their resistances and enables inference about their thermal surrounding. Water in a polypropylene container changes voltage levels by (33 ± 2) % compared to air. Applications with a glass container and household oil instead of water are also successfully tested. Both liquids yield a distinctive difference in signal and the sensor determines the height of the oil/water interface as well as the surfaces of the liquid. To further demonstrate the capabilities of the sensor, segregation of a water‐oil mixture, slowed by a mixing agent, is observed in real time. This work offers an adaptable and simple alternative for external level sensing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信