昆布发酵的细菌纳米纤维素的物理改性:打造功能性仿生复合材料平台

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Meruyert Imanbekova, Reza Abbasi, Xinyue Hu, Mohul Sharma, Marion Vandewynckele-Bossut, Rupa Haldavnekar, Sebastian Wachsmann-Hogiu
{"title":"昆布发酵的细菌纳米纤维素的物理改性:打造功能性仿生复合材料平台","authors":"Meruyert Imanbekova,&nbsp;Reza Abbasi,&nbsp;Xinyue Hu,&nbsp;Mohul Sharma,&nbsp;Marion Vandewynckele-Bossut,&nbsp;Rupa Haldavnekar,&nbsp;Sebastian Wachsmann-Hogiu","doi":"10.1002/mame.202400041","DOIUrl":null,"url":null,"abstract":"<p>Sustainable functionalization of bacterial cellulose for cost-effective bionanocomposites with desired properties has received growing attention in recent years. This article presents the results of work aimed at obtaining bionanocomposite materials based on bacterial cellulose, a natural and eco-friendly material. Bacterial cellulose obtained from the Kombucha symbiotic culture of bacteria and yeast (SCOBY) fermentation process is functionalized by embedding with diatom frustules, silver nanoparticles (AgNPs), and poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS). The effects of functionalization on mechanical, optical, plasmonic, electrical, chemiluminescent, and antimicrobial properties are evaluated. Morphological characteristics of the nanocomposites are studied using electron microscopy. Addition of diatom frustules introduced into the SCOBY culture media results in bionanocomposite materials with enhanced tensile strength and increased ultraviolet (UV) blockage properties. In situ functionalization of bacterial cellulose with AgNPs tunes plasmonic and chemiluminescent properties, revealing the biosensing potential of the material. Modified bacterial cellulose shows antimicrobial activity in experiments with gram-positive and gram-negative bacteria. Dual functionalization of bacterial cellulose with PEDOT:PSS and AgNPs results in improved electrical conductivity of the bionanocomposite. Overall, bottom-up physical functionalization approaches and the resulting bionanocomposite materials will open up new opportunities for the low-cost production of green materials and contribute to the development of a sustainable economy.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mame.202400041","citationCount":"0","resultStr":"{\"title\":\"Physical Modifications of Kombucha-Derived Bacterial Nanocellulose: Toward a Functional Bionanocomposite Platform\",\"authors\":\"Meruyert Imanbekova,&nbsp;Reza Abbasi,&nbsp;Xinyue Hu,&nbsp;Mohul Sharma,&nbsp;Marion Vandewynckele-Bossut,&nbsp;Rupa Haldavnekar,&nbsp;Sebastian Wachsmann-Hogiu\",\"doi\":\"10.1002/mame.202400041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Sustainable functionalization of bacterial cellulose for cost-effective bionanocomposites with desired properties has received growing attention in recent years. This article presents the results of work aimed at obtaining bionanocomposite materials based on bacterial cellulose, a natural and eco-friendly material. Bacterial cellulose obtained from the Kombucha symbiotic culture of bacteria and yeast (SCOBY) fermentation process is functionalized by embedding with diatom frustules, silver nanoparticles (AgNPs), and poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS). The effects of functionalization on mechanical, optical, plasmonic, electrical, chemiluminescent, and antimicrobial properties are evaluated. Morphological characteristics of the nanocomposites are studied using electron microscopy. Addition of diatom frustules introduced into the SCOBY culture media results in bionanocomposite materials with enhanced tensile strength and increased ultraviolet (UV) blockage properties. In situ functionalization of bacterial cellulose with AgNPs tunes plasmonic and chemiluminescent properties, revealing the biosensing potential of the material. Modified bacterial cellulose shows antimicrobial activity in experiments with gram-positive and gram-negative bacteria. Dual functionalization of bacterial cellulose with PEDOT:PSS and AgNPs results in improved electrical conductivity of the bionanocomposite. Overall, bottom-up physical functionalization approaches and the resulting bionanocomposite materials will open up new opportunities for the low-cost production of green materials and contribute to the development of a sustainable economy.</p>\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mame.202400041\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mame.202400041\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mame.202400041","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

近年来,对细菌纤维素进行可持续的功能化处理,以获得具有所需性能的经济高效的仿生复合材料日益受到关注。本文介绍了旨在获得基于细菌纤维素这种天然环保材料的仿生复合材料的研究成果。从康普茶细菌和酵母共生培养物(SCOBY)发酵过程中获得的细菌纤维素通过嵌入硅藻颗粒、银纳米粒子(AgNPs)和聚(3,4-亚乙二氧基噻吩):聚苯乙烯磺酸盐(PEDOT:PSS)实现了功能化。评估了功能化对机械、光学、等离子、电学、化学发光和抗菌特性的影响。使用电子显微镜研究了纳米复合材料的形态特征。在 SCOBY 培养基中添加硅藻球,可使仿生复合材料具有更高的拉伸强度和更强的紫外线(UV)阻挡性能。用 AgNPs 对细菌纤维素进行原位功能化可调谐等离子体和化学发光特性,从而揭示了这种材料的生物传感潜力。改性细菌纤维素在革兰氏阳性和革兰氏阴性细菌实验中显示出抗菌活性。细菌纤维素与 PEDOT:PSS 和 AgNPs 的双重功能化提高了仿生复合材料的导电性。总之,自下而上的物理功能化方法和由此产生的仿生复合材料将为低成本生产绿色材料带来新的机遇,并促进可持续经济的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Physical Modifications of Kombucha-Derived Bacterial Nanocellulose: Toward a Functional Bionanocomposite Platform

Sustainable functionalization of bacterial cellulose for cost-effective bionanocomposites with desired properties has received growing attention in recent years. This article presents the results of work aimed at obtaining bionanocomposite materials based on bacterial cellulose, a natural and eco-friendly material. Bacterial cellulose obtained from the Kombucha symbiotic culture of bacteria and yeast (SCOBY) fermentation process is functionalized by embedding with diatom frustules, silver nanoparticles (AgNPs), and poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS). The effects of functionalization on mechanical, optical, plasmonic, electrical, chemiluminescent, and antimicrobial properties are evaluated. Morphological characteristics of the nanocomposites are studied using electron microscopy. Addition of diatom frustules introduced into the SCOBY culture media results in bionanocomposite materials with enhanced tensile strength and increased ultraviolet (UV) blockage properties. In situ functionalization of bacterial cellulose with AgNPs tunes plasmonic and chemiluminescent properties, revealing the biosensing potential of the material. Modified bacterial cellulose shows antimicrobial activity in experiments with gram-positive and gram-negative bacteria. Dual functionalization of bacterial cellulose with PEDOT:PSS and AgNPs results in improved electrical conductivity of the bionanocomposite. Overall, bottom-up physical functionalization approaches and the resulting bionanocomposite materials will open up new opportunities for the low-cost production of green materials and contribute to the development of a sustainable economy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信