Meruyert Imanbekova, Reza Abbasi, Xinyue Hu, Mohul Sharma, Marion Vandewynckele-Bossut, Rupa Haldavnekar, Sebastian Wachsmann-Hogiu
{"title":"昆布发酵的细菌纳米纤维素的物理改性:打造功能性仿生复合材料平台","authors":"Meruyert Imanbekova, Reza Abbasi, Xinyue Hu, Mohul Sharma, Marion Vandewynckele-Bossut, Rupa Haldavnekar, Sebastian Wachsmann-Hogiu","doi":"10.1002/mame.202400041","DOIUrl":null,"url":null,"abstract":"<p>Sustainable functionalization of bacterial cellulose for cost-effective bionanocomposites with desired properties has received growing attention in recent years. This article presents the results of work aimed at obtaining bionanocomposite materials based on bacterial cellulose, a natural and eco-friendly material. Bacterial cellulose obtained from the Kombucha symbiotic culture of bacteria and yeast (SCOBY) fermentation process is functionalized by embedding with diatom frustules, silver nanoparticles (AgNPs), and poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS). The effects of functionalization on mechanical, optical, plasmonic, electrical, chemiluminescent, and antimicrobial properties are evaluated. Morphological characteristics of the nanocomposites are studied using electron microscopy. Addition of diatom frustules introduced into the SCOBY culture media results in bionanocomposite materials with enhanced tensile strength and increased ultraviolet (UV) blockage properties. In situ functionalization of bacterial cellulose with AgNPs tunes plasmonic and chemiluminescent properties, revealing the biosensing potential of the material. Modified bacterial cellulose shows antimicrobial activity in experiments with gram-positive and gram-negative bacteria. Dual functionalization of bacterial cellulose with PEDOT:PSS and AgNPs results in improved electrical conductivity of the bionanocomposite. Overall, bottom-up physical functionalization approaches and the resulting bionanocomposite materials will open up new opportunities for the low-cost production of green materials and contribute to the development of a sustainable economy.</p>","PeriodicalId":18151,"journal":{"name":"Macromolecular Materials and Engineering","volume":"309 10","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mame.202400041","citationCount":"0","resultStr":"{\"title\":\"Physical Modifications of Kombucha-Derived Bacterial Nanocellulose: Toward a Functional Bionanocomposite Platform\",\"authors\":\"Meruyert Imanbekova, Reza Abbasi, Xinyue Hu, Mohul Sharma, Marion Vandewynckele-Bossut, Rupa Haldavnekar, Sebastian Wachsmann-Hogiu\",\"doi\":\"10.1002/mame.202400041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Sustainable functionalization of bacterial cellulose for cost-effective bionanocomposites with desired properties has received growing attention in recent years. This article presents the results of work aimed at obtaining bionanocomposite materials based on bacterial cellulose, a natural and eco-friendly material. Bacterial cellulose obtained from the Kombucha symbiotic culture of bacteria and yeast (SCOBY) fermentation process is functionalized by embedding with diatom frustules, silver nanoparticles (AgNPs), and poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS). The effects of functionalization on mechanical, optical, plasmonic, electrical, chemiluminescent, and antimicrobial properties are evaluated. Morphological characteristics of the nanocomposites are studied using electron microscopy. Addition of diatom frustules introduced into the SCOBY culture media results in bionanocomposite materials with enhanced tensile strength and increased ultraviolet (UV) blockage properties. In situ functionalization of bacterial cellulose with AgNPs tunes plasmonic and chemiluminescent properties, revealing the biosensing potential of the material. Modified bacterial cellulose shows antimicrobial activity in experiments with gram-positive and gram-negative bacteria. Dual functionalization of bacterial cellulose with PEDOT:PSS and AgNPs results in improved electrical conductivity of the bionanocomposite. Overall, bottom-up physical functionalization approaches and the resulting bionanocomposite materials will open up new opportunities for the low-cost production of green materials and contribute to the development of a sustainable economy.</p>\",\"PeriodicalId\":18151,\"journal\":{\"name\":\"Macromolecular Materials and Engineering\",\"volume\":\"309 10\",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mame.202400041\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecular Materials and Engineering\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mame.202400041\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Materials and Engineering","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mame.202400041","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Physical Modifications of Kombucha-Derived Bacterial Nanocellulose: Toward a Functional Bionanocomposite Platform
Sustainable functionalization of bacterial cellulose for cost-effective bionanocomposites with desired properties has received growing attention in recent years. This article presents the results of work aimed at obtaining bionanocomposite materials based on bacterial cellulose, a natural and eco-friendly material. Bacterial cellulose obtained from the Kombucha symbiotic culture of bacteria and yeast (SCOBY) fermentation process is functionalized by embedding with diatom frustules, silver nanoparticles (AgNPs), and poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS). The effects of functionalization on mechanical, optical, plasmonic, electrical, chemiluminescent, and antimicrobial properties are evaluated. Morphological characteristics of the nanocomposites are studied using electron microscopy. Addition of diatom frustules introduced into the SCOBY culture media results in bionanocomposite materials with enhanced tensile strength and increased ultraviolet (UV) blockage properties. In situ functionalization of bacterial cellulose with AgNPs tunes plasmonic and chemiluminescent properties, revealing the biosensing potential of the material. Modified bacterial cellulose shows antimicrobial activity in experiments with gram-positive and gram-negative bacteria. Dual functionalization of bacterial cellulose with PEDOT:PSS and AgNPs results in improved electrical conductivity of the bionanocomposite. Overall, bottom-up physical functionalization approaches and the resulting bionanocomposite materials will open up new opportunities for the low-cost production of green materials and contribute to the development of a sustainable economy.
期刊介绍:
Macromolecular Materials and Engineering is the high-quality polymer science journal dedicated to the design, modification, characterization, processing and application of advanced polymeric materials, including membranes, sensors, sustainability, composites, fibers, foams, 3D printing, actuators as well as energy and electronic applications.
Macromolecular Materials and Engineering is among the top journals publishing original research in polymer science.
The journal presents strictly peer-reviewed Research Articles, Reviews, Perspectives and Comments.
ISSN: 1438-7492 (print). 1439-2054 (online).
Readership:Polymer scientists, chemists, physicists, materials scientists, engineers
Abstracting and Indexing Information:
CAS: Chemical Abstracts Service (ACS)
CCR Database (Clarivate Analytics)
Chemical Abstracts Service/SciFinder (ACS)
Chemistry Server Reaction Center (Clarivate Analytics)
ChemWeb (ChemIndustry.com)
Chimica Database (Elsevier)
COMPENDEX (Elsevier)
Current Contents: Physical, Chemical & Earth Sciences (Clarivate Analytics)
Directory of Open Access Journals (DOAJ)
INSPEC (IET)
Journal Citation Reports/Science Edition (Clarivate Analytics)
Materials Science & Engineering Database (ProQuest)
PASCAL Database (INIST/CNRS)
Polymer Library (iSmithers RAPRA)
Reaction Citation Index (Clarivate Analytics)
Science Citation Index (Clarivate Analytics)
Science Citation Index Expanded (Clarivate Analytics)
SciTech Premium Collection (ProQuest)
SCOPUS (Elsevier)
Technology Collection (ProQuest)
Web of Science (Clarivate Analytics)