B. Balaji, V. B. Alur, Ajmeera Suresh, P. S. Ranjit
{"title":"喷射压力对使用四元混合燃料的共轨直喷发动机的性能、排放和燃烧的影响","authors":"B. Balaji, V. B. Alur, Ajmeera Suresh, P. S. Ranjit","doi":"10.1177/09544089241258376","DOIUrl":null,"url":null,"abstract":"The scarcity and rising costs of fossil fuels, coupled with increasing pollution levels, have prompted the exploration of innovative biofuel blends. While binary and ternary fuels have been studied extensively in proportions of 5–20%, replacing up to 30–40% of fossil fuel dependency without significant engine modifications remains a challenge. One potential solution is to investigate an optimal quaternary blend (QB) through experimental methods. This study investigates the impact of increased injection pressure (IOP) and quaternary fuel blends on a common rail direct injection (CRDI) engine's performance and emissions. Different blends, including diesel fuel, vegetable oil, mahua methyl ester and normal-butanol, were tested to replace 30–40% of diesel and enhance combustion, reduce exhaust emissions and improve overall performance. Experiments used a 1-cylinder CRDI engine at high IOPs (400, 500, 600 and 700 bar). Results at 600 bar IOP showed that the optimal blend, QB3–QB4, increased brake thermal efficiency (BTE) by 9% and reduced brake-specific fuel consumption (BSFC) by approximately 11% compared to other blends. Emissions at 600 bar included a 16% reduction in hydrocarbons (HC) and a 24% decrease in carbon monoxide (CO) at full load. However, nitrogen oxide (NOx) emissions slightly increased with higher IOP. Significantly employing the QB3–QB4 blend at 600 bar improved control over HC, CO and smoke emissions. Overall, performance was enhanced and comparable to conventional diesel fuel, with only a minor increase in NOx emissions.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"32 21","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of injection pressure on the performance, emissions, and combustion of a common rail direct injection engine fueled with quaternary blends\",\"authors\":\"B. Balaji, V. B. Alur, Ajmeera Suresh, P. S. Ranjit\",\"doi\":\"10.1177/09544089241258376\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The scarcity and rising costs of fossil fuels, coupled with increasing pollution levels, have prompted the exploration of innovative biofuel blends. While binary and ternary fuels have been studied extensively in proportions of 5–20%, replacing up to 30–40% of fossil fuel dependency without significant engine modifications remains a challenge. One potential solution is to investigate an optimal quaternary blend (QB) through experimental methods. This study investigates the impact of increased injection pressure (IOP) and quaternary fuel blends on a common rail direct injection (CRDI) engine's performance and emissions. Different blends, including diesel fuel, vegetable oil, mahua methyl ester and normal-butanol, were tested to replace 30–40% of diesel and enhance combustion, reduce exhaust emissions and improve overall performance. Experiments used a 1-cylinder CRDI engine at high IOPs (400, 500, 600 and 700 bar). Results at 600 bar IOP showed that the optimal blend, QB3–QB4, increased brake thermal efficiency (BTE) by 9% and reduced brake-specific fuel consumption (BSFC) by approximately 11% compared to other blends. Emissions at 600 bar included a 16% reduction in hydrocarbons (HC) and a 24% decrease in carbon monoxide (CO) at full load. However, nitrogen oxide (NOx) emissions slightly increased with higher IOP. Significantly employing the QB3–QB4 blend at 600 bar improved control over HC, CO and smoke emissions. Overall, performance was enhanced and comparable to conventional diesel fuel, with only a minor increase in NOx emissions.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":\"32 21\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/09544089241258376\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09544089241258376","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Impact of injection pressure on the performance, emissions, and combustion of a common rail direct injection engine fueled with quaternary blends
The scarcity and rising costs of fossil fuels, coupled with increasing pollution levels, have prompted the exploration of innovative biofuel blends. While binary and ternary fuels have been studied extensively in proportions of 5–20%, replacing up to 30–40% of fossil fuel dependency without significant engine modifications remains a challenge. One potential solution is to investigate an optimal quaternary blend (QB) through experimental methods. This study investigates the impact of increased injection pressure (IOP) and quaternary fuel blends on a common rail direct injection (CRDI) engine's performance and emissions. Different blends, including diesel fuel, vegetable oil, mahua methyl ester and normal-butanol, were tested to replace 30–40% of diesel and enhance combustion, reduce exhaust emissions and improve overall performance. Experiments used a 1-cylinder CRDI engine at high IOPs (400, 500, 600 and 700 bar). Results at 600 bar IOP showed that the optimal blend, QB3–QB4, increased brake thermal efficiency (BTE) by 9% and reduced brake-specific fuel consumption (BSFC) by approximately 11% compared to other blends. Emissions at 600 bar included a 16% reduction in hydrocarbons (HC) and a 24% decrease in carbon monoxide (CO) at full load. However, nitrogen oxide (NOx) emissions slightly increased with higher IOP. Significantly employing the QB3–QB4 blend at 600 bar improved control over HC, CO and smoke emissions. Overall, performance was enhanced and comparable to conventional diesel fuel, with only a minor increase in NOx emissions.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.