Richard Ziegler, S. Ilyas, Sanjay Mathur, Gerardo F. Goya, Jes'us Antonio Fuentes-Garc'ia
{"title":"通过药物载体磁性电纺纤维遥控激活药物释放","authors":"Richard Ziegler, S. Ilyas, Sanjay Mathur, Gerardo F. Goya, Jes'us Antonio Fuentes-Garc'ia","doi":"10.3390/fib12060048","DOIUrl":null,"url":null,"abstract":"The integration of magnetic nanoparticles within fibrillar structures represents an interesting avenue for the remotely controlled release of therapeutic agents. This work presents a novel drug release platform based on electrospun magnetic fibers (EMFs) combining drugs, magnetic nanoparticles (MNPs) and mesoporous silica nanoparticles (MSNs) for controlled drug delivery via alternating magnetic fields (AMF). The platform was demonstrated to be versatile and effective for hydrophilic ketorolac (KET) and hydrophobic curcumin (CUR) encapsulation and the major response observed for AMF-triggered release was reached using drug-loaded MSNs within the fibers, providing fine control over drug release patterns. The EMFs exhibited excellent inductive heating capabilities, showing a temperature increase of ∆T up to 8 °C within a 5 min AMF pulse. The system is shown to be promising for applications like transdermal pain management, oncological drug delivery, tissue engineering, and wound healing, enabling precise control over drug release in both spatial and temporal dimensions. The findings of this study offer valuable insights into the development of the next generation of smart drug delivery systems, based in multifunctional materials that can be remotely regulated and potentially revolutionize the field of nanomedicine.","PeriodicalId":12122,"journal":{"name":"Fibers","volume":null,"pages":null},"PeriodicalIF":4.0000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Remote-Controlled Activation of the Release through Drug-Loaded Magnetic Electrospun Fibers\",\"authors\":\"Richard Ziegler, S. Ilyas, Sanjay Mathur, Gerardo F. Goya, Jes'us Antonio Fuentes-Garc'ia\",\"doi\":\"10.3390/fib12060048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The integration of magnetic nanoparticles within fibrillar structures represents an interesting avenue for the remotely controlled release of therapeutic agents. This work presents a novel drug release platform based on electrospun magnetic fibers (EMFs) combining drugs, magnetic nanoparticles (MNPs) and mesoporous silica nanoparticles (MSNs) for controlled drug delivery via alternating magnetic fields (AMF). The platform was demonstrated to be versatile and effective for hydrophilic ketorolac (KET) and hydrophobic curcumin (CUR) encapsulation and the major response observed for AMF-triggered release was reached using drug-loaded MSNs within the fibers, providing fine control over drug release patterns. The EMFs exhibited excellent inductive heating capabilities, showing a temperature increase of ∆T up to 8 °C within a 5 min AMF pulse. The system is shown to be promising for applications like transdermal pain management, oncological drug delivery, tissue engineering, and wound healing, enabling precise control over drug release in both spatial and temporal dimensions. The findings of this study offer valuable insights into the development of the next generation of smart drug delivery systems, based in multifunctional materials that can be remotely regulated and potentially revolutionize the field of nanomedicine.\",\"PeriodicalId\":12122,\"journal\":{\"name\":\"Fibers\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fibers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/fib12060048\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fibers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fib12060048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Remote-Controlled Activation of the Release through Drug-Loaded Magnetic Electrospun Fibers
The integration of magnetic nanoparticles within fibrillar structures represents an interesting avenue for the remotely controlled release of therapeutic agents. This work presents a novel drug release platform based on electrospun magnetic fibers (EMFs) combining drugs, magnetic nanoparticles (MNPs) and mesoporous silica nanoparticles (MSNs) for controlled drug delivery via alternating magnetic fields (AMF). The platform was demonstrated to be versatile and effective for hydrophilic ketorolac (KET) and hydrophobic curcumin (CUR) encapsulation and the major response observed for AMF-triggered release was reached using drug-loaded MSNs within the fibers, providing fine control over drug release patterns. The EMFs exhibited excellent inductive heating capabilities, showing a temperature increase of ∆T up to 8 °C within a 5 min AMF pulse. The system is shown to be promising for applications like transdermal pain management, oncological drug delivery, tissue engineering, and wound healing, enabling precise control over drug release in both spatial and temporal dimensions. The findings of this study offer valuable insights into the development of the next generation of smart drug delivery systems, based in multifunctional materials that can be remotely regulated and potentially revolutionize the field of nanomedicine.
FibersEngineering-Civil and Structural Engineering
CiteScore
7.00
自引率
7.70%
发文量
92
审稿时长
11 weeks
期刊介绍:
Fibers (ISSN 2079-6439) is a peer-reviewed scientific journal that publishes original articles, critical reviews, research notes and short communications on the materials science and all other empirical and theoretical studies of fibers, providing a forum for integrating fiber research across many disciplines. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. The following topics are relevant and within the scope of this journal: -textile fibers -natural fibers and biological microfibrils -metallic fibers -optic fibers -carbon fibers -silicon carbide fibers -fiberglass -mineral fibers -cellulose fibers -polymer fibers -microfibers, nanofibers and nanotubes -new processing methods for fibers -chemistry of fiber materials -physical properties of fibers -exposure to and toxicology of fibers -biokinetics of fibers -the diversity of fiber origins