具有最小长度不确定性关系的一维和二维狄拉克振荡器的代数解和热力学性质

Léonie Dagoudo, F. A. Dossa, G. Y. Avossevou
{"title":"具有最小长度不确定性关系的一维和二维狄拉克振荡器的代数解和热力学性质","authors":"Léonie Dagoudo, F. A. Dossa, G. Y. Avossevou","doi":"10.1209/0295-5075/ad5374","DOIUrl":null,"url":null,"abstract":"\n We study the quantum characteristics of the Dirac oscillator within the framework of Heisenberg's generalized uncertainty principle. This principle leads to the appearance of a minimal length of the order of the Planck length. Hidden symmetries are identified to solve the model algebraically. The presence of the minimal length leads to a quadratic dependence of the energy spectrum on the quantum number $n$, implying the hard confinement property of the system. Thermodynamic properties are calculated using the canonical partition function. The latter is well determined by the method based on Epstein's zeta function. The results reveal that the minimal length has a significant effect on the thermodynamic properties.","PeriodicalId":503117,"journal":{"name":"Europhysics Letters","volume":"5 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Algebraic solution and thermodynamic properties for the one- and two-dimensional Dirac oscillator with minimal length uncertainty relations\",\"authors\":\"Léonie Dagoudo, F. A. Dossa, G. Y. Avossevou\",\"doi\":\"10.1209/0295-5075/ad5374\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n We study the quantum characteristics of the Dirac oscillator within the framework of Heisenberg's generalized uncertainty principle. This principle leads to the appearance of a minimal length of the order of the Planck length. Hidden symmetries are identified to solve the model algebraically. The presence of the minimal length leads to a quadratic dependence of the energy spectrum on the quantum number $n$, implying the hard confinement property of the system. Thermodynamic properties are calculated using the canonical partition function. The latter is well determined by the method based on Epstein's zeta function. The results reveal that the minimal length has a significant effect on the thermodynamic properties.\",\"PeriodicalId\":503117,\"journal\":{\"name\":\"Europhysics Letters\",\"volume\":\"5 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Europhysics Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1209/0295-5075/ad5374\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Europhysics Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1209/0295-5075/ad5374","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们在海森堡广义不确定性原理的框架内研究了狄拉克振荡器的量子特性。该原理导致出现了普朗克长度数量级的最小长度。隐藏的对称性被识别出来,以代数方式求解模型。最小长度的存在导致了能谱与量子数 $n$ 的二次相关性,暗示了系统的硬约束特性。热力学性质是利用规范划分函数计算得出的。后者通过基于爱泼斯坦 zeta 函数的方法得到了很好的确定。结果表明,最小长度对热力学性质有显著影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Algebraic solution and thermodynamic properties for the one- and two-dimensional Dirac oscillator with minimal length uncertainty relations
We study the quantum characteristics of the Dirac oscillator within the framework of Heisenberg's generalized uncertainty principle. This principle leads to the appearance of a minimal length of the order of the Planck length. Hidden symmetries are identified to solve the model algebraically. The presence of the minimal length leads to a quadratic dependence of the energy spectrum on the quantum number $n$, implying the hard confinement property of the system. Thermodynamic properties are calculated using the canonical partition function. The latter is well determined by the method based on Epstein's zeta function. The results reveal that the minimal length has a significant effect on the thermodynamic properties.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信