求助PDF
{"title":"半有限冯-诺依曼代数中量子熵的强次熵不等式","authors":"Andrzej Łuczak","doi":"10.1002/mana.202300383","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mi>M</mi>\n <annotation>$\\mathcal {M}$</annotation>\n </semantics></math> be a semifinite von Neumann algebra with a normal faithful semifinite trace <span></span><math>\n <semantics>\n <mi>τ</mi>\n <annotation>$\\tau$</annotation>\n </semantics></math>, and let <span></span><math>\n <semantics>\n <mi>A</mi>\n <annotation>$\\mathcal {A}$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mi>B</mi>\n <annotation>$\\mathcal {B}$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mi>R</mi>\n <annotation>$\\mathcal {R}$</annotation>\n </semantics></math> be its subalgebras such that <span></span><math>\n <semantics>\n <mrow>\n <mi>R</mi>\n <mo>⊂</mo>\n <mi>A</mi>\n <mo>∩</mo>\n <mi>B</mi>\n </mrow>\n <annotation>$\\mathcal {R}\\subset \\mathcal {A}\\cap \\mathcal {B}$</annotation>\n </semantics></math> and that <span></span><math>\n <semantics>\n <mi>τ</mi>\n <annotation>$\\tau$</annotation>\n </semantics></math> restricted to any of these subalgebras is semifinite. Denote by <span></span><math>\n <semantics>\n <msub>\n <mi>E</mi>\n <mi>A</mi>\n </msub>\n <annotation>$\\mathbb {E}_\\mathcal {A}$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <msub>\n <mi>E</mi>\n <mi>B</mi>\n </msub>\n <annotation>$\\mathbb {E}_\\mathcal {B}$</annotation>\n </semantics></math>, and <span></span><math>\n <semantics>\n <msub>\n <mi>E</mi>\n <mi>R</mi>\n </msub>\n <annotation>$\\mathbb {E}_\\mathcal {R}$</annotation>\n </semantics></math> the normal conditional expectations from <span></span><math>\n <semantics>\n <mi>M</mi>\n <annotation>$\\mathcal {M}$</annotation>\n </semantics></math> onto <span></span><math>\n <semantics>\n <mi>A</mi>\n <annotation>$\\mathcal {A}$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mi>B</mi>\n <annotation>$\\mathcal {B}$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mi>R</mi>\n <annotation>$\\mathcal {R}$</annotation>\n </semantics></math>, respectively, such that <span></span><math>\n <semantics>\n <mi>τ</mi>\n <annotation>$\\tau$</annotation>\n </semantics></math> is invariant with respect to any of them. The quadruple <span></span><math>\n <semantics>\n <mi>M</mi>\n <annotation>$\\mathcal {M}$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mi>A</mi>\n <annotation>$\\mathcal {A}$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mi>B</mi>\n <annotation>$\\mathcal {B}$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mi>R</mi>\n <annotation>$\\mathcal {R}$</annotation>\n </semantics></math> is said to be a commuting square if\n\n </p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"297 9","pages":"3192-3206"},"PeriodicalIF":0.8000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A strong subadditivity-like inequality for quantum entropy in semifinite von Neumann algebras\",\"authors\":\"Andrzej Łuczak\",\"doi\":\"10.1002/mana.202300383\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span></span><math>\\n <semantics>\\n <mi>M</mi>\\n <annotation>$\\\\mathcal {M}$</annotation>\\n </semantics></math> be a semifinite von Neumann algebra with a normal faithful semifinite trace <span></span><math>\\n <semantics>\\n <mi>τ</mi>\\n <annotation>$\\\\tau$</annotation>\\n </semantics></math>, and let <span></span><math>\\n <semantics>\\n <mi>A</mi>\\n <annotation>$\\\\mathcal {A}$</annotation>\\n </semantics></math>, <span></span><math>\\n <semantics>\\n <mi>B</mi>\\n <annotation>$\\\\mathcal {B}$</annotation>\\n </semantics></math>, <span></span><math>\\n <semantics>\\n <mi>R</mi>\\n <annotation>$\\\\mathcal {R}$</annotation>\\n </semantics></math> be its subalgebras such that <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>R</mi>\\n <mo>⊂</mo>\\n <mi>A</mi>\\n <mo>∩</mo>\\n <mi>B</mi>\\n </mrow>\\n <annotation>$\\\\mathcal {R}\\\\subset \\\\mathcal {A}\\\\cap \\\\mathcal {B}$</annotation>\\n </semantics></math> and that <span></span><math>\\n <semantics>\\n <mi>τ</mi>\\n <annotation>$\\\\tau$</annotation>\\n </semantics></math> restricted to any of these subalgebras is semifinite. Denote by <span></span><math>\\n <semantics>\\n <msub>\\n <mi>E</mi>\\n <mi>A</mi>\\n </msub>\\n <annotation>$\\\\mathbb {E}_\\\\mathcal {A}$</annotation>\\n </semantics></math>, <span></span><math>\\n <semantics>\\n <msub>\\n <mi>E</mi>\\n <mi>B</mi>\\n </msub>\\n <annotation>$\\\\mathbb {E}_\\\\mathcal {B}$</annotation>\\n </semantics></math>, and <span></span><math>\\n <semantics>\\n <msub>\\n <mi>E</mi>\\n <mi>R</mi>\\n </msub>\\n <annotation>$\\\\mathbb {E}_\\\\mathcal {R}$</annotation>\\n </semantics></math> the normal conditional expectations from <span></span><math>\\n <semantics>\\n <mi>M</mi>\\n <annotation>$\\\\mathcal {M}$</annotation>\\n </semantics></math> onto <span></span><math>\\n <semantics>\\n <mi>A</mi>\\n <annotation>$\\\\mathcal {A}$</annotation>\\n </semantics></math>, <span></span><math>\\n <semantics>\\n <mi>B</mi>\\n <annotation>$\\\\mathcal {B}$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mi>R</mi>\\n <annotation>$\\\\mathcal {R}$</annotation>\\n </semantics></math>, respectively, such that <span></span><math>\\n <semantics>\\n <mi>τ</mi>\\n <annotation>$\\\\tau$</annotation>\\n </semantics></math> is invariant with respect to any of them. The quadruple <span></span><math>\\n <semantics>\\n <mi>M</mi>\\n <annotation>$\\\\mathcal {M}$</annotation>\\n </semantics></math>, <span></span><math>\\n <semantics>\\n <mi>A</mi>\\n <annotation>$\\\\mathcal {A}$</annotation>\\n </semantics></math>, <span></span><math>\\n <semantics>\\n <mi>B</mi>\\n <annotation>$\\\\mathcal {B}$</annotation>\\n </semantics></math>, <span></span><math>\\n <semantics>\\n <mi>R</mi>\\n <annotation>$\\\\mathcal {R}$</annotation>\\n </semantics></math> is said to be a commuting square if\\n\\n </p>\",\"PeriodicalId\":49853,\"journal\":{\"name\":\"Mathematische Nachrichten\",\"volume\":\"297 9\",\"pages\":\"3192-3206\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Nachrichten\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mana.202300383\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Nachrichten","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.202300383","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
引用
批量引用