半有限冯-诺依曼代数中量子熵的强次熵不等式

IF 0.8 3区 数学 Q2 MATHEMATICS
Andrzej Łuczak
{"title":"半有限冯-诺依曼代数中量子熵的强次熵不等式","authors":"Andrzej Łuczak","doi":"10.1002/mana.202300383","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mi>M</mi>\n <annotation>$\\mathcal {M}$</annotation>\n </semantics></math> be a semifinite von Neumann algebra with a normal faithful semifinite trace <span></span><math>\n <semantics>\n <mi>τ</mi>\n <annotation>$\\tau$</annotation>\n </semantics></math>, and let <span></span><math>\n <semantics>\n <mi>A</mi>\n <annotation>$\\mathcal {A}$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mi>B</mi>\n <annotation>$\\mathcal {B}$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mi>R</mi>\n <annotation>$\\mathcal {R}$</annotation>\n </semantics></math> be its subalgebras such that <span></span><math>\n <semantics>\n <mrow>\n <mi>R</mi>\n <mo>⊂</mo>\n <mi>A</mi>\n <mo>∩</mo>\n <mi>B</mi>\n </mrow>\n <annotation>$\\mathcal {R}\\subset \\mathcal {A}\\cap \\mathcal {B}$</annotation>\n </semantics></math> and that <span></span><math>\n <semantics>\n <mi>τ</mi>\n <annotation>$\\tau$</annotation>\n </semantics></math> restricted to any of these subalgebras is semifinite. Denote by <span></span><math>\n <semantics>\n <msub>\n <mi>E</mi>\n <mi>A</mi>\n </msub>\n <annotation>$\\mathbb {E}_\\mathcal {A}$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <msub>\n <mi>E</mi>\n <mi>B</mi>\n </msub>\n <annotation>$\\mathbb {E}_\\mathcal {B}$</annotation>\n </semantics></math>, and <span></span><math>\n <semantics>\n <msub>\n <mi>E</mi>\n <mi>R</mi>\n </msub>\n <annotation>$\\mathbb {E}_\\mathcal {R}$</annotation>\n </semantics></math> the normal conditional expectations from <span></span><math>\n <semantics>\n <mi>M</mi>\n <annotation>$\\mathcal {M}$</annotation>\n </semantics></math> onto <span></span><math>\n <semantics>\n <mi>A</mi>\n <annotation>$\\mathcal {A}$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mi>B</mi>\n <annotation>$\\mathcal {B}$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mi>R</mi>\n <annotation>$\\mathcal {R}$</annotation>\n </semantics></math>, respectively, such that <span></span><math>\n <semantics>\n <mi>τ</mi>\n <annotation>$\\tau$</annotation>\n </semantics></math> is invariant with respect to any of them. The quadruple <span></span><math>\n <semantics>\n <mi>M</mi>\n <annotation>$\\mathcal {M}$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mi>A</mi>\n <annotation>$\\mathcal {A}$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mi>B</mi>\n <annotation>$\\mathcal {B}$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mi>R</mi>\n <annotation>$\\mathcal {R}$</annotation>\n </semantics></math> is said to be a commuting square if\n\n </p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"297 9","pages":"3192-3206"},"PeriodicalIF":0.8000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A strong subadditivity-like inequality for quantum entropy in semifinite von Neumann algebras\",\"authors\":\"Andrzej Łuczak\",\"doi\":\"10.1002/mana.202300383\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span></span><math>\\n <semantics>\\n <mi>M</mi>\\n <annotation>$\\\\mathcal {M}$</annotation>\\n </semantics></math> be a semifinite von Neumann algebra with a normal faithful semifinite trace <span></span><math>\\n <semantics>\\n <mi>τ</mi>\\n <annotation>$\\\\tau$</annotation>\\n </semantics></math>, and let <span></span><math>\\n <semantics>\\n <mi>A</mi>\\n <annotation>$\\\\mathcal {A}$</annotation>\\n </semantics></math>, <span></span><math>\\n <semantics>\\n <mi>B</mi>\\n <annotation>$\\\\mathcal {B}$</annotation>\\n </semantics></math>, <span></span><math>\\n <semantics>\\n <mi>R</mi>\\n <annotation>$\\\\mathcal {R}$</annotation>\\n </semantics></math> be its subalgebras such that <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>R</mi>\\n <mo>⊂</mo>\\n <mi>A</mi>\\n <mo>∩</mo>\\n <mi>B</mi>\\n </mrow>\\n <annotation>$\\\\mathcal {R}\\\\subset \\\\mathcal {A}\\\\cap \\\\mathcal {B}$</annotation>\\n </semantics></math> and that <span></span><math>\\n <semantics>\\n <mi>τ</mi>\\n <annotation>$\\\\tau$</annotation>\\n </semantics></math> restricted to any of these subalgebras is semifinite. Denote by <span></span><math>\\n <semantics>\\n <msub>\\n <mi>E</mi>\\n <mi>A</mi>\\n </msub>\\n <annotation>$\\\\mathbb {E}_\\\\mathcal {A}$</annotation>\\n </semantics></math>, <span></span><math>\\n <semantics>\\n <msub>\\n <mi>E</mi>\\n <mi>B</mi>\\n </msub>\\n <annotation>$\\\\mathbb {E}_\\\\mathcal {B}$</annotation>\\n </semantics></math>, and <span></span><math>\\n <semantics>\\n <msub>\\n <mi>E</mi>\\n <mi>R</mi>\\n </msub>\\n <annotation>$\\\\mathbb {E}_\\\\mathcal {R}$</annotation>\\n </semantics></math> the normal conditional expectations from <span></span><math>\\n <semantics>\\n <mi>M</mi>\\n <annotation>$\\\\mathcal {M}$</annotation>\\n </semantics></math> onto <span></span><math>\\n <semantics>\\n <mi>A</mi>\\n <annotation>$\\\\mathcal {A}$</annotation>\\n </semantics></math>, <span></span><math>\\n <semantics>\\n <mi>B</mi>\\n <annotation>$\\\\mathcal {B}$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mi>R</mi>\\n <annotation>$\\\\mathcal {R}$</annotation>\\n </semantics></math>, respectively, such that <span></span><math>\\n <semantics>\\n <mi>τ</mi>\\n <annotation>$\\\\tau$</annotation>\\n </semantics></math> is invariant with respect to any of them. The quadruple <span></span><math>\\n <semantics>\\n <mi>M</mi>\\n <annotation>$\\\\mathcal {M}$</annotation>\\n </semantics></math>, <span></span><math>\\n <semantics>\\n <mi>A</mi>\\n <annotation>$\\\\mathcal {A}$</annotation>\\n </semantics></math>, <span></span><math>\\n <semantics>\\n <mi>B</mi>\\n <annotation>$\\\\mathcal {B}$</annotation>\\n </semantics></math>, <span></span><math>\\n <semantics>\\n <mi>R</mi>\\n <annotation>$\\\\mathcal {R}$</annotation>\\n </semantics></math> is said to be a commuting square if\\n\\n </p>\",\"PeriodicalId\":49853,\"journal\":{\"name\":\"Mathematische Nachrichten\",\"volume\":\"297 9\",\"pages\":\"3192-3206\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Nachrichten\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mana.202300383\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Nachrichten","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.202300383","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设 是一个半有穷冯-诺依曼代数,有一个正则忠实半有穷迹线 , 并设 , , 是它的子代数,使得 和 限于其中任何一个子代数都是半有穷的。用 , , 和 分别表示来自于 , 和 , 的正态条件期望,使得相对于它们中的任何一个都是不变的。我们还研究了上述不等式中相等的情况,并得到了各种等价条件,其中有限冯-诺依曼代数方程的形式尤其吸引人。对于这类数组,在数组 和 的独立性假设下,还可以得到一个条件 .
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A strong subadditivity-like inequality for quantum entropy in semifinite von Neumann algebras

Let M $\mathcal {M}$ be a semifinite von Neumann algebra with a normal faithful semifinite trace τ $\tau$ , and let A $\mathcal {A}$ , B $\mathcal {B}$ , R $\mathcal {R}$ be its subalgebras such that R A B $\mathcal {R}\subset \mathcal {A}\cap \mathcal {B}$ and that τ $\tau$ restricted to any of these subalgebras is semifinite. Denote by E A $\mathbb {E}_\mathcal {A}$ , E B $\mathbb {E}_\mathcal {B}$ , and E R $\mathbb {E}_\mathcal {R}$ the normal conditional expectations from M $\mathcal {M}$ onto A $\mathcal {A}$ , B $\mathcal {B}$ and R $\mathcal {R}$ , respectively, such that τ $\tau$ is invariant with respect to any of them. The quadruple M $\mathcal {M}$ , A $\mathcal {A}$ , B $\mathcal {B}$ , R $\mathcal {R}$ is said to be a commuting square if

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
157
审稿时长
4-8 weeks
期刊介绍: Mathematische Nachrichten - Mathematical News publishes original papers on new results and methods that hold prospect for substantial progress in mathematics and its applications. All branches of analysis, algebra, number theory, geometry and topology, flow mechanics and theoretical aspects of stochastics are given special emphasis. Mathematische Nachrichten is indexed/abstracted in Current Contents/Physical, Chemical and Earth Sciences; Mathematical Review; Zentralblatt für Mathematik; Math Database on STN International, INSPEC; Science Citation Index
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信