Cheng Song, Lanqing Xiao, Yan Chen, Fan Yang, Huiying Meng, Wanying Zhang, Yifan Zhang, Yang Wu
{"title":"用于光催化应用的各种结构的 TiO2 基催化剂:综述","authors":"Cheng Song, Lanqing Xiao, Yan Chen, Fan Yang, Huiying Meng, Wanying Zhang, Yifan Zhang, Yang Wu","doi":"10.3390/catal14060366","DOIUrl":null,"url":null,"abstract":"TiO2-based catalysts with various surface heterostructures (0D, 1D, 2D, and 3D) have been widely researched owing to their cost-effectiveness, high stability, and environmentally friendly nature, and can be used for many applications in various fields, including hydrogen production and pollutant degradation. However, there are also many existing problems limiting their practical application, such as their large band gap and rapid electron–hole recombination rate. Owing to the abundance of recent achievements in materials science, we will summarize the recent structural engineering strategies which provide favorable photocatalytic activity enhancements, such as enhanced visible light absorption, stability, an increased charge–carrier separation rate and improved specific surface area. Among the various structural engineering methods in this review, we will introduce TiO2-based materials with different dimensional structures. Meanwhile, we also discuss recent achievements in synthesis methods and application of TiO2-based catalysts in various fields. We aim to display a comprehensive overview which can be a guide for the development of a new generation of TiO2-based catalysts according to their structural design for enhanced solar energy conversion.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":"16 6","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TiO2-Based Catalysts with Various Structures for Photocatalytic Application: A Review\",\"authors\":\"Cheng Song, Lanqing Xiao, Yan Chen, Fan Yang, Huiying Meng, Wanying Zhang, Yifan Zhang, Yang Wu\",\"doi\":\"10.3390/catal14060366\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"TiO2-based catalysts with various surface heterostructures (0D, 1D, 2D, and 3D) have been widely researched owing to their cost-effectiveness, high stability, and environmentally friendly nature, and can be used for many applications in various fields, including hydrogen production and pollutant degradation. However, there are also many existing problems limiting their practical application, such as their large band gap and rapid electron–hole recombination rate. Owing to the abundance of recent achievements in materials science, we will summarize the recent structural engineering strategies which provide favorable photocatalytic activity enhancements, such as enhanced visible light absorption, stability, an increased charge–carrier separation rate and improved specific surface area. Among the various structural engineering methods in this review, we will introduce TiO2-based materials with different dimensional structures. Meanwhile, we also discuss recent achievements in synthesis methods and application of TiO2-based catalysts in various fields. We aim to display a comprehensive overview which can be a guide for the development of a new generation of TiO2-based catalysts according to their structural design for enhanced solar energy conversion.\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":\"16 6\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.3390/catal14060366\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/catal14060366","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
TiO2-Based Catalysts with Various Structures for Photocatalytic Application: A Review
TiO2-based catalysts with various surface heterostructures (0D, 1D, 2D, and 3D) have been widely researched owing to their cost-effectiveness, high stability, and environmentally friendly nature, and can be used for many applications in various fields, including hydrogen production and pollutant degradation. However, there are also many existing problems limiting their practical application, such as their large band gap and rapid electron–hole recombination rate. Owing to the abundance of recent achievements in materials science, we will summarize the recent structural engineering strategies which provide favorable photocatalytic activity enhancements, such as enhanced visible light absorption, stability, an increased charge–carrier separation rate and improved specific surface area. Among the various structural engineering methods in this review, we will introduce TiO2-based materials with different dimensional structures. Meanwhile, we also discuss recent achievements in synthesis methods and application of TiO2-based catalysts in various fields. We aim to display a comprehensive overview which can be a guide for the development of a new generation of TiO2-based catalysts according to their structural design for enhanced solar energy conversion.
期刊介绍:
ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric.
Indexed/Abstracted:
Web of Science SCIE
Scopus
CAS
INSPEC
Portico