{"title":"非等效反铁磁耦合子晶格诱发两步自旋交叉转换:平衡与非平衡方面","authors":"V. Veliu, O. Yalçın, S. Özüm, R. Erdem","doi":"10.3390/magnetochemistry10060042","DOIUrl":null,"url":null,"abstract":"As a continuation to the previously published work (Yalçın et al. (2022)), we investigate the equilibrium and nonequilibrium properties of the spin-crossover systems, with a specific focus on the nonequivalent sublattice, and compare these properties with those of the equivalent sublattices. We used the lowest approximation of the cluster variation method (LACVM) to derive the static equations for the order parameters of the two sublattices and determine high-spin fraction in relation to temperature and external magnetic field in a spin-crossover system. At a low temperature, the transition from stable high-spin (HS) state where nHS=1 occurs in the plateau region, where nHS=0.5 for nonequivalent sublattices. The order parameters for non-equivalent sublattices exhibit different states at the transition temperature. Also, we study the nonequilibrium properties of the order parameters and high-spin fraction using the path probability method (PPM). With the current model, we obtain and analyze the relaxation curves for the order parameters Sa, Sb, and high-spin fraction. These curves demonstrate the existence of bistability at low temperatures. At the end of this study, we present the flow diagram that shows the order parameters for different temperature values. The diagram exhibits states that are stable, metastable, and unstable.","PeriodicalId":18194,"journal":{"name":"Magnetochemistry","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonequivalent Antiferromagnetically Coupled Sublattices Induce Two-Step Spin-Crossover Transitions: Equilibrium and Nonequilibrium Aspects\",\"authors\":\"V. Veliu, O. Yalçın, S. Özüm, R. Erdem\",\"doi\":\"10.3390/magnetochemistry10060042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As a continuation to the previously published work (Yalçın et al. (2022)), we investigate the equilibrium and nonequilibrium properties of the spin-crossover systems, with a specific focus on the nonequivalent sublattice, and compare these properties with those of the equivalent sublattices. We used the lowest approximation of the cluster variation method (LACVM) to derive the static equations for the order parameters of the two sublattices and determine high-spin fraction in relation to temperature and external magnetic field in a spin-crossover system. At a low temperature, the transition from stable high-spin (HS) state where nHS=1 occurs in the plateau region, where nHS=0.5 for nonequivalent sublattices. The order parameters for non-equivalent sublattices exhibit different states at the transition temperature. Also, we study the nonequilibrium properties of the order parameters and high-spin fraction using the path probability method (PPM). With the current model, we obtain and analyze the relaxation curves for the order parameters Sa, Sb, and high-spin fraction. These curves demonstrate the existence of bistability at low temperatures. At the end of this study, we present the flow diagram that shows the order parameters for different temperature values. The diagram exhibits states that are stable, metastable, and unstable.\",\"PeriodicalId\":18194,\"journal\":{\"name\":\"Magnetochemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Magnetochemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.3390/magnetochemistry10060042\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetochemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/magnetochemistry10060042","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
As a continuation to the previously published work (Yalçın et al. (2022)), we investigate the equilibrium and nonequilibrium properties of the spin-crossover systems, with a specific focus on the nonequivalent sublattice, and compare these properties with those of the equivalent sublattices. We used the lowest approximation of the cluster variation method (LACVM) to derive the static equations for the order parameters of the two sublattices and determine high-spin fraction in relation to temperature and external magnetic field in a spin-crossover system. At a low temperature, the transition from stable high-spin (HS) state where nHS=1 occurs in the plateau region, where nHS=0.5 for nonequivalent sublattices. The order parameters for non-equivalent sublattices exhibit different states at the transition temperature. Also, we study the nonequilibrium properties of the order parameters and high-spin fraction using the path probability method (PPM). With the current model, we obtain and analyze the relaxation curves for the order parameters Sa, Sb, and high-spin fraction. These curves demonstrate the existence of bistability at low temperatures. At the end of this study, we present the flow diagram that shows the order parameters for different temperature values. The diagram exhibits states that are stable, metastable, and unstable.
期刊介绍:
Magnetochemistry (ISSN 2312-7481) is a unique international, scientific open access journal on molecular magnetism, the relationship between chemical structure and magnetism and magnetic materials. Magnetochemistry publishes research articles, short communications and reviews. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.