晶格和局部电子结构调制实现超长寿命富锂离子阴极材料

IF 19.3 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Xiao Han, Renkang Wu, Guiyang Gao, Jiantao Li*, Mengjian Fan, Shihao Wang, Yuanyuan Liu, Saichao Li, Liang Lin, Yinggan Zhang, Baisheng Sa, Jie Lin, Laisen Wang, Dong-Liang Peng*, Qingshui Xie* and Khalil Amine*, 
{"title":"晶格和局部电子结构调制实现超长寿命富锂离子阴极材料","authors":"Xiao Han,&nbsp;Renkang Wu,&nbsp;Guiyang Gao,&nbsp;Jiantao Li*,&nbsp;Mengjian Fan,&nbsp;Shihao Wang,&nbsp;Yuanyuan Liu,&nbsp;Saichao Li,&nbsp;Liang Lin,&nbsp;Yinggan Zhang,&nbsp;Baisheng Sa,&nbsp;Jie Lin,&nbsp;Laisen Wang,&nbsp;Dong-Liang Peng*,&nbsp;Qingshui Xie* and Khalil Amine*,&nbsp;","doi":"10.1021/acsenergylett.4c00939","DOIUrl":null,"url":null,"abstract":"<p >Effectively alleviating severe performance deterioration including rapid capacity decay and continuous voltage fading of Li-rich layered oxide (LLO) cathodes by suppressing the irreversible oxygen release and transition metal (TM) migration is a critical challenge during prolonged cycling. Herein, we report a Sb-doped LLO (SLLO) cathode with shortened TM<sub>oct</sub>–TM<sub>oct</sub> distance and modulated local electronic structure, which can significantly enhance the oxygen vacancy formation energy and TM migration energy barriers. Therefore, the SLLO cathode showcases an impressive energy density of 1052 Wh kg<sup>–1</sup> at 0.2 C and an outstanding rate capability of 214 mAh g<sup>–1</sup> at 5 C with a remarkable capacity retention of 79.2% even after 1000 cycles. It should be pointed out that it exhibits greatly enhanced voltage stability with an outstanding voltage retention of 86.2% after cycling 1600 times at 10 C. This work provides a prototype for significantly enhancing the reversibility in electrochemical reactions of high-capacity layered cathode materials.</p>","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":null,"pages":null},"PeriodicalIF":19.3000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lattice and Local Electronic Structure Modulation Enables Ultra-Long-Life Li-Rich Cathode Materials\",\"authors\":\"Xiao Han,&nbsp;Renkang Wu,&nbsp;Guiyang Gao,&nbsp;Jiantao Li*,&nbsp;Mengjian Fan,&nbsp;Shihao Wang,&nbsp;Yuanyuan Liu,&nbsp;Saichao Li,&nbsp;Liang Lin,&nbsp;Yinggan Zhang,&nbsp;Baisheng Sa,&nbsp;Jie Lin,&nbsp;Laisen Wang,&nbsp;Dong-Liang Peng*,&nbsp;Qingshui Xie* and Khalil Amine*,&nbsp;\",\"doi\":\"10.1021/acsenergylett.4c00939\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Effectively alleviating severe performance deterioration including rapid capacity decay and continuous voltage fading of Li-rich layered oxide (LLO) cathodes by suppressing the irreversible oxygen release and transition metal (TM) migration is a critical challenge during prolonged cycling. Herein, we report a Sb-doped LLO (SLLO) cathode with shortened TM<sub>oct</sub>–TM<sub>oct</sub> distance and modulated local electronic structure, which can significantly enhance the oxygen vacancy formation energy and TM migration energy barriers. Therefore, the SLLO cathode showcases an impressive energy density of 1052 Wh kg<sup>–1</sup> at 0.2 C and an outstanding rate capability of 214 mAh g<sup>–1</sup> at 5 C with a remarkable capacity retention of 79.2% even after 1000 cycles. It should be pointed out that it exhibits greatly enhanced voltage stability with an outstanding voltage retention of 86.2% after cycling 1600 times at 10 C. This work provides a prototype for significantly enhancing the reversibility in electrochemical reactions of high-capacity layered cathode materials.</p>\",\"PeriodicalId\":16,\"journal\":{\"name\":\"ACS Energy Letters \",\"volume\":null,\"pages\":null},\"PeriodicalIF\":19.3000,\"publicationDate\":\"2024-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Energy Letters \",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsenergylett.4c00939\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Energy Letters ","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsenergylett.4c00939","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

通过抑制不可逆氧释放和过渡金属(TM)迁移,有效缓解富锂层状氧化物(LLO)阴极的严重性能劣化(包括快速容量衰减和持续电压衰减),是长期循环过程中的一项关键挑战。在此,我们报告了一种掺锑的 LLO(SLO)阴极,它具有缩短的 TMoct-TMoct 间距和调制的局部电子结构,可显著提高氧空位形成能和 TM 迁移能垒。因此,SLLO 阴极在 0.2 摄氏度时的能量密度达到了惊人的 1052 Wh kg-1,在 5 摄氏度时的速率能力为 214 mAh g-1,即使循环 1000 次后,容量保持率仍高达 79.2%。需要指出的是,它的电压稳定性大大增强,在 10 C 下循环 1600 次后,电压保持率达到 86.2%。这项工作为显著提高高容量层状阴极材料电化学反应的可逆性提供了一个原型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Lattice and Local Electronic Structure Modulation Enables Ultra-Long-Life Li-Rich Cathode Materials

Lattice and Local Electronic Structure Modulation Enables Ultra-Long-Life Li-Rich Cathode Materials

Lattice and Local Electronic Structure Modulation Enables Ultra-Long-Life Li-Rich Cathode Materials

Effectively alleviating severe performance deterioration including rapid capacity decay and continuous voltage fading of Li-rich layered oxide (LLO) cathodes by suppressing the irreversible oxygen release and transition metal (TM) migration is a critical challenge during prolonged cycling. Herein, we report a Sb-doped LLO (SLLO) cathode with shortened TMoct–TMoct distance and modulated local electronic structure, which can significantly enhance the oxygen vacancy formation energy and TM migration energy barriers. Therefore, the SLLO cathode showcases an impressive energy density of 1052 Wh kg–1 at 0.2 C and an outstanding rate capability of 214 mAh g–1 at 5 C with a remarkable capacity retention of 79.2% even after 1000 cycles. It should be pointed out that it exhibits greatly enhanced voltage stability with an outstanding voltage retention of 86.2% after cycling 1600 times at 10 C. This work provides a prototype for significantly enhancing the reversibility in electrochemical reactions of high-capacity layered cathode materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Energy Letters
ACS Energy Letters Energy-Renewable Energy, Sustainability and the Environment
CiteScore
31.20
自引率
5.00%
发文量
469
审稿时长
1 months
期刊介绍: ACS Energy Letters is a monthly journal that publishes papers reporting new scientific advances in energy research. The journal focuses on topics that are of interest to scientists working in the fundamental and applied sciences. Rapid publication is a central criterion for acceptance, and the journal is known for its quick publication times, with an average of 4-6 weeks from submission to web publication in As Soon As Publishable format. ACS Energy Letters is ranked as the number one journal in the Web of Science Electrochemistry category. It also ranks within the top 10 journals for Physical Chemistry, Energy & Fuels, and Nanoscience & Nanotechnology. The journal offers several types of articles, including Letters, Energy Express, Perspectives, Reviews, Editorials, Viewpoints and Energy Focus. Additionally, authors have the option to submit videos that summarize or support the information presented in a Perspective or Review article, which can be highlighted on the journal's website. ACS Energy Letters is abstracted and indexed in Chemical Abstracts Service/SciFinder, EBSCO-summon, PubMed, Web of Science, Scopus and Portico.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信