{"title":"人类 80S 核糖体亚 2 Å 分辨率结构中的化学修饰、离子和水分子","authors":"","doi":"10.1038/s41594-024-01275-w","DOIUrl":null,"url":null,"abstract":"Using next-generation cryo-EM and mass spectrometry, we identified 235 chemical modifications in the sub-2 Å resolution structure of the full human 80S ribosome. The newly identified rRNA modifications were found to create new hydrogen bond patterns for riboses and uridines. Ion visualization revealed that Mg2+-associated water molecules are variably substituted by side chains. This study provides the molecular basis for the stabilization of A–U or A–Ψ base pairs and RNA–protein interactions.","PeriodicalId":49141,"journal":{"name":"Nature Structural & Molecular Biology","volume":"31 8","pages":"1152-1153"},"PeriodicalIF":12.5000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chemical modifications, ions and water molecules in the sub-2 Å resolution structure of the human 80S ribosome\",\"authors\":\"\",\"doi\":\"10.1038/s41594-024-01275-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using next-generation cryo-EM and mass spectrometry, we identified 235 chemical modifications in the sub-2 Å resolution structure of the full human 80S ribosome. The newly identified rRNA modifications were found to create new hydrogen bond patterns for riboses and uridines. Ion visualization revealed that Mg2+-associated water molecules are variably substituted by side chains. This study provides the molecular basis for the stabilization of A–U or A–Ψ base pairs and RNA–protein interactions.\",\"PeriodicalId\":49141,\"journal\":{\"name\":\"Nature Structural & Molecular Biology\",\"volume\":\"31 8\",\"pages\":\"1152-1153\"},\"PeriodicalIF\":12.5000,\"publicationDate\":\"2024-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Structural & Molecular Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.nature.com/articles/s41594-024-01275-w\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Structural & Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41594-024-01275-w","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Chemical modifications, ions and water molecules in the sub-2 Å resolution structure of the human 80S ribosome
Using next-generation cryo-EM and mass spectrometry, we identified 235 chemical modifications in the sub-2 Å resolution structure of the full human 80S ribosome. The newly identified rRNA modifications were found to create new hydrogen bond patterns for riboses and uridines. Ion visualization revealed that Mg2+-associated water molecules are variably substituted by side chains. This study provides the molecular basis for the stabilization of A–U or A–Ψ base pairs and RNA–protein interactions.
期刊介绍:
Nature Structural & Molecular Biology is a comprehensive platform that combines structural and molecular research. Our journal focuses on exploring the functional and mechanistic aspects of biological processes, emphasizing how molecular components collaborate to achieve a particular function. While structural data can shed light on these insights, our publication does not require them as a prerequisite.