Rui Song, Guanshu Zhao, Juan Manuel Restrepo-Flórez, Camilo J. Viasus Pérez, Zhijie Chen, Chaoqian Ai, Andrew Wang, Dengwei Jing, Athanasios A. Tountas, Jiuli Guo, Chengliang Mao, Chaoran Li, Jiahui Shen, Guangming Cai, Chenyue Qiu, Jessica Ye, Yubin Fu, Chistos T. Maravelias, Lu Wang, Junchuan Sun, Yang-Fan Xu, Zhao Li, Joel Yi Yang Loh, Nhat Truong Nguyen, Le He, Xiaohong Zhang, Geoffrey A. Ozin
{"title":"利用 LaMn1-xCuxO3 光催化乙烷脱氢生产乙烯","authors":"Rui Song, Guanshu Zhao, Juan Manuel Restrepo-Flórez, Camilo J. Viasus Pérez, Zhijie Chen, Chaoqian Ai, Andrew Wang, Dengwei Jing, Athanasios A. Tountas, Jiuli Guo, Chengliang Mao, Chaoran Li, Jiahui Shen, Guangming Cai, Chenyue Qiu, Jessica Ye, Yubin Fu, Chistos T. Maravelias, Lu Wang, Junchuan Sun, Yang-Fan Xu, Zhao Li, Joel Yi Yang Loh, Nhat Truong Nguyen, Le He, Xiaohong Zhang, Geoffrey A. Ozin","doi":"10.1038/s41560-024-01541-7","DOIUrl":null,"url":null,"abstract":"Industrial-scale ethylene production occurs primarily by fossil-powered steam cracking of ethane—a high-temperature, high-energy process. An alternative, photochemical, pathway powered by sunlight and operating under ambient conditions could potentially mitigate some of the associated greenhouse gas emissions. Here we report the photocatalytic dehydrogenation of ethane to ethylene and hydrogen using LaMn1−xCuxO3. This perovskite oxide possesses redox-active Lewis acid sites, comprising Mn(III) and Mn(IV), and Lewis base sites, comprising O(-II) and OH(-I), collectively dubbed surface-frustrated Lewis pairs. We find that tuning the relative proportions of these sites optimizes the activity, selectivity and yield for ethane dehydrogenation. The highest ethylene production rate and ethane conversion achieved were around 1.1 mmol g−1 h−1 and 4.9%, respectively. We show a simple outdoor prototype to demonstrate the viability of a solar ethylene process. In addition, techno-economic analysis revealed the economic potential of an industrial-scale solar ethylene production from ethane. Light-driven approaches could lower the carbon footprint of chemical production. Here the authors use the perovskite oxide LaMn1−xCuxO3 as a photocatalyst to convert ethane to ethylene and hydrogen.","PeriodicalId":19073,"journal":{"name":"Nature Energy","volume":null,"pages":null},"PeriodicalIF":49.7000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ethylene production via photocatalytic dehydrogenation of ethane using LaMn1−xCuxO3\",\"authors\":\"Rui Song, Guanshu Zhao, Juan Manuel Restrepo-Flórez, Camilo J. Viasus Pérez, Zhijie Chen, Chaoqian Ai, Andrew Wang, Dengwei Jing, Athanasios A. Tountas, Jiuli Guo, Chengliang Mao, Chaoran Li, Jiahui Shen, Guangming Cai, Chenyue Qiu, Jessica Ye, Yubin Fu, Chistos T. Maravelias, Lu Wang, Junchuan Sun, Yang-Fan Xu, Zhao Li, Joel Yi Yang Loh, Nhat Truong Nguyen, Le He, Xiaohong Zhang, Geoffrey A. Ozin\",\"doi\":\"10.1038/s41560-024-01541-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Industrial-scale ethylene production occurs primarily by fossil-powered steam cracking of ethane—a high-temperature, high-energy process. An alternative, photochemical, pathway powered by sunlight and operating under ambient conditions could potentially mitigate some of the associated greenhouse gas emissions. Here we report the photocatalytic dehydrogenation of ethane to ethylene and hydrogen using LaMn1−xCuxO3. This perovskite oxide possesses redox-active Lewis acid sites, comprising Mn(III) and Mn(IV), and Lewis base sites, comprising O(-II) and OH(-I), collectively dubbed surface-frustrated Lewis pairs. We find that tuning the relative proportions of these sites optimizes the activity, selectivity and yield for ethane dehydrogenation. The highest ethylene production rate and ethane conversion achieved were around 1.1 mmol g−1 h−1 and 4.9%, respectively. We show a simple outdoor prototype to demonstrate the viability of a solar ethylene process. In addition, techno-economic analysis revealed the economic potential of an industrial-scale solar ethylene production from ethane. Light-driven approaches could lower the carbon footprint of chemical production. Here the authors use the perovskite oxide LaMn1−xCuxO3 as a photocatalyst to convert ethane to ethylene and hydrogen.\",\"PeriodicalId\":19073,\"journal\":{\"name\":\"Nature Energy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":49.7000,\"publicationDate\":\"2024-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Energy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.nature.com/articles/s41560-024-01541-7\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Energy","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41560-024-01541-7","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Ethylene production via photocatalytic dehydrogenation of ethane using LaMn1−xCuxO3
Industrial-scale ethylene production occurs primarily by fossil-powered steam cracking of ethane—a high-temperature, high-energy process. An alternative, photochemical, pathway powered by sunlight and operating under ambient conditions could potentially mitigate some of the associated greenhouse gas emissions. Here we report the photocatalytic dehydrogenation of ethane to ethylene and hydrogen using LaMn1−xCuxO3. This perovskite oxide possesses redox-active Lewis acid sites, comprising Mn(III) and Mn(IV), and Lewis base sites, comprising O(-II) and OH(-I), collectively dubbed surface-frustrated Lewis pairs. We find that tuning the relative proportions of these sites optimizes the activity, selectivity and yield for ethane dehydrogenation. The highest ethylene production rate and ethane conversion achieved were around 1.1 mmol g−1 h−1 and 4.9%, respectively. We show a simple outdoor prototype to demonstrate the viability of a solar ethylene process. In addition, techno-economic analysis revealed the economic potential of an industrial-scale solar ethylene production from ethane. Light-driven approaches could lower the carbon footprint of chemical production. Here the authors use the perovskite oxide LaMn1−xCuxO3 as a photocatalyst to convert ethane to ethylene and hydrogen.
Nature EnergyEnergy-Energy Engineering and Power Technology
CiteScore
75.10
自引率
1.10%
发文量
193
期刊介绍:
Nature Energy is a monthly, online-only journal committed to showcasing the most impactful research on energy, covering everything from its generation and distribution to the societal implications of energy technologies and policies.
With a focus on exploring all facets of the ongoing energy discourse, Nature Energy delves into topics such as energy generation, storage, distribution, management, and the societal impacts of energy technologies and policies. Emphasizing studies that push the boundaries of knowledge and contribute to the development of next-generation solutions, the journal serves as a platform for the exchange of ideas among stakeholders at the forefront of the energy sector.
Maintaining the hallmark standards of the Nature brand, Nature Energy boasts a dedicated team of professional editors, a rigorous peer-review process, meticulous copy-editing and production, rapid publication times, and editorial independence.
In addition to original research articles, Nature Energy also publishes a range of content types, including Comments, Perspectives, Reviews, News & Views, Features, and Correspondence, covering a diverse array of disciplines relevant to the field of energy.