{"title":"关于幂等凸度和幂等副中心映射","authors":"Dawid Krasiński , Taras Radul","doi":"10.1016/j.topol.2024.108974","DOIUrl":null,"url":null,"abstract":"<div><p>We consider an isomorphism between the idempotent convexity based on the maximum and the addition operations and the idempotent measure convexity on the maximum and the multiplication operations. We use this isomorphism to investigate topological properties of the barycenter map related to the maximum and the multiplication operations.</p></div>","PeriodicalId":51201,"journal":{"name":"Topology and its Applications","volume":"353 ","pages":"Article 108974"},"PeriodicalIF":0.6000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On idempotent convexities and idempotent barycenter maps\",\"authors\":\"Dawid Krasiński , Taras Radul\",\"doi\":\"10.1016/j.topol.2024.108974\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider an isomorphism between the idempotent convexity based on the maximum and the addition operations and the idempotent measure convexity on the maximum and the multiplication operations. We use this isomorphism to investigate topological properties of the barycenter map related to the maximum and the multiplication operations.</p></div>\",\"PeriodicalId\":51201,\"journal\":{\"name\":\"Topology and its Applications\",\"volume\":\"353 \",\"pages\":\"Article 108974\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topology and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166864124001597\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166864124001597","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
On idempotent convexities and idempotent barycenter maps
We consider an isomorphism between the idempotent convexity based on the maximum and the addition operations and the idempotent measure convexity on the maximum and the multiplication operations. We use this isomorphism to investigate topological properties of the barycenter map related to the maximum and the multiplication operations.
期刊介绍:
Topology and its Applications is primarily concerned with publishing original research papers of moderate length. However, a limited number of carefully selected survey or expository papers are also included. The mathematical focus of the journal is that suggested by the title: Research in Topology. It is felt that it is inadvisable to attempt a definitive description of topology as understood for this journal. Certainly the subject includes the algebraic, general, geometric, and set-theoretic facets of topology as well as areas of interactions between topology and other mathematical disciplines, e.g. topological algebra, topological dynamics, functional analysis, category theory. Since the roles of various aspects of topology continue to change, the non-specific delineation of topics serves to reflect the current state of research in topology.
At regular intervals, the journal publishes a section entitled Open Problems in Topology, edited by J. van Mill and G.M. Reed. This is a status report on the 1100 problems listed in the book of the same name published by North-Holland in 1990, edited by van Mill and Reed.