{"title":"基于光纤布拉格光栅和荧光强度比的应变和温度区分混合模型","authors":"Hacen Khlaifi , Amira Zrelli , Tahar ezzedine","doi":"10.1016/j.rio.2024.100711","DOIUrl":null,"url":null,"abstract":"<div><p>Fiber optic sensors, including Fiber Bragg Grating (FBG) networks, are widely used to monitor the structural health (SHM) of infrastructure such as buildings, bridges, and tunnels. However, their multiple sensitivities make it difficult to isolate the specific impacts of each measured parameter on FBG, compromising the accuracy of the data. To overcome this challenge, we propose an innovative approach that combines FBG with the principle of Fluorescence Intensity Ratio (FIR). This combination allows for a more accurate analysis of wavelength variations in FBG, thus facilitating the distinction between temperature and deformation impacts. Additionally, we are developing a matrix formula to accurately determine temperature and deformation from FBG and FIR data, thereby improving the reliability of structural monitoring. Our results demonstrate the effectiveness of this hybrid approach through experiments and simulations, highlighting its importance in optimizing the performance of SHM devices. By integrating these two technologies, our method allows for a better understanding of parameter variations, leading to more reliable and accurate monitoring of infrastructure structural health.</p></div>","PeriodicalId":21151,"journal":{"name":"Results in Optics","volume":"16 ","pages":"Article 100711"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666950124001081/pdfft?md5=1c5fbe0eb7ac0ed310ad11e73bb04e8d&pid=1-s2.0-S2666950124001081-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Hybrid model based on Fiber Bragg Grating and fluorescence intensities ratio for strain and temperature distinction\",\"authors\":\"Hacen Khlaifi , Amira Zrelli , Tahar ezzedine\",\"doi\":\"10.1016/j.rio.2024.100711\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Fiber optic sensors, including Fiber Bragg Grating (FBG) networks, are widely used to monitor the structural health (SHM) of infrastructure such as buildings, bridges, and tunnels. However, their multiple sensitivities make it difficult to isolate the specific impacts of each measured parameter on FBG, compromising the accuracy of the data. To overcome this challenge, we propose an innovative approach that combines FBG with the principle of Fluorescence Intensity Ratio (FIR). This combination allows for a more accurate analysis of wavelength variations in FBG, thus facilitating the distinction between temperature and deformation impacts. Additionally, we are developing a matrix formula to accurately determine temperature and deformation from FBG and FIR data, thereby improving the reliability of structural monitoring. Our results demonstrate the effectiveness of this hybrid approach through experiments and simulations, highlighting its importance in optimizing the performance of SHM devices. By integrating these two technologies, our method allows for a better understanding of parameter variations, leading to more reliable and accurate monitoring of infrastructure structural health.</p></div>\",\"PeriodicalId\":21151,\"journal\":{\"name\":\"Results in Optics\",\"volume\":\"16 \",\"pages\":\"Article 100711\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666950124001081/pdfft?md5=1c5fbe0eb7ac0ed310ad11e73bb04e8d&pid=1-s2.0-S2666950124001081-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Optics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666950124001081\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Optics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666950124001081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Hybrid model based on Fiber Bragg Grating and fluorescence intensities ratio for strain and temperature distinction
Fiber optic sensors, including Fiber Bragg Grating (FBG) networks, are widely used to monitor the structural health (SHM) of infrastructure such as buildings, bridges, and tunnels. However, their multiple sensitivities make it difficult to isolate the specific impacts of each measured parameter on FBG, compromising the accuracy of the data. To overcome this challenge, we propose an innovative approach that combines FBG with the principle of Fluorescence Intensity Ratio (FIR). This combination allows for a more accurate analysis of wavelength variations in FBG, thus facilitating the distinction between temperature and deformation impacts. Additionally, we are developing a matrix formula to accurately determine temperature and deformation from FBG and FIR data, thereby improving the reliability of structural monitoring. Our results demonstrate the effectiveness of this hybrid approach through experiments and simulations, highlighting its importance in optimizing the performance of SHM devices. By integrating these two technologies, our method allows for a better understanding of parameter variations, leading to more reliable and accurate monitoring of infrastructure structural health.