{"title":"具有大初始数据的一维可压缩量子纳维-斯托克斯-泊松方程的全局好求解性","authors":"Zeyuan Liu , Lan Zhang","doi":"10.1016/j.nonrwa.2024.104148","DOIUrl":null,"url":null,"abstract":"<div><p>This paper is concerned with the global existence and large time behavior of classical solutions away from vacuum to the Cauchy problem of the 1D compressible quantum Navier–Stokes–Poisson equations with large initial perturbation. Moreover, we obtain the global strong/classical solution of Navier–Stokes–Poisson equations through the vanishing dispersion limit with certain convergence rates. We focus on the case that the viscosity depends on density linearly which extends the former results of constant viscosity in Zhang et al. (2022) by the second author. Some useful estimates are developed to deduce the uniform-in-time lower and upper bounds on the specific volume and the electric potential.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global well-posedness to the 1D compressible quantum Navier–Stokes–Poisson equations with large initial data\",\"authors\":\"Zeyuan Liu , Lan Zhang\",\"doi\":\"10.1016/j.nonrwa.2024.104148\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper is concerned with the global existence and large time behavior of classical solutions away from vacuum to the Cauchy problem of the 1D compressible quantum Navier–Stokes–Poisson equations with large initial perturbation. Moreover, we obtain the global strong/classical solution of Navier–Stokes–Poisson equations through the vanishing dispersion limit with certain convergence rates. We focus on the case that the viscosity depends on density linearly which extends the former results of constant viscosity in Zhang et al. (2022) by the second author. Some useful estimates are developed to deduce the uniform-in-time lower and upper bounds on the specific volume and the electric potential.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1468121824000889\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1468121824000889","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Global well-posedness to the 1D compressible quantum Navier–Stokes–Poisson equations with large initial data
This paper is concerned with the global existence and large time behavior of classical solutions away from vacuum to the Cauchy problem of the 1D compressible quantum Navier–Stokes–Poisson equations with large initial perturbation. Moreover, we obtain the global strong/classical solution of Navier–Stokes–Poisson equations through the vanishing dispersion limit with certain convergence rates. We focus on the case that the viscosity depends on density linearly which extends the former results of constant viscosity in Zhang et al. (2022) by the second author. Some useful estimates are developed to deduce the uniform-in-time lower and upper bounds on the specific volume and the electric potential.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.