75Ni13.5Cr2.7B-3.5Si Clad 316 不锈钢残余应力图

Behrooz Tafazzolimoghaddam , Hemant Kumar , M. Krishnamoorthy , Prince Joseph , H.C. Dey , C.R. Das , Richard Moat
{"title":"75Ni13.5Cr2.7B-3.5Si Clad 316 不锈钢残余应力图","authors":"Behrooz Tafazzolimoghaddam ,&nbsp;Hemant Kumar ,&nbsp;M. Krishnamoorthy ,&nbsp;Prince Joseph ,&nbsp;H.C. Dey ,&nbsp;C.R. Das ,&nbsp;Richard Moat","doi":"10.1016/j.prostr.2024.05.077","DOIUrl":null,"url":null,"abstract":"<div><p>Plasma Transfer Arc (PTA) process uses the intense heat of electric arc to melt and fuse the 75Ni13.5Cr2.7B-3.5Si hard-facing alloy and the base metal. This process develops substantial residual stresses near the hard-faced surfaces during deposition and subsequent solidification and cool down. Furthermore, when a material interface is present, additional residual stress is formed because of the thermal strain mismatch of the dissimilar materials caused by their different thermal expansion coefficients. These stresses can cause cracks in the overlay during the component’s service life or even earlier during manufacturing which can lead to partial or total loss of the part structural integrity. To start optimizing the process to avoid these defects, it is necessary to know the residual stress distribution in the part and how it is related to the process parameters. Hard-faced components are having distinct microstructures with a step change in material properties, and this makes the residual stress measurement more challenging. This paper presents 2D residual stress maps of the deposit cross sections for PTA hard-faced samples using the contour method. This study is part of an ongoing research on the influence of process parameters on the residual stress and local microstructure of 75Ni13.5Cr2.7B-3.5Si clad 316 stainless steel.</p></div>","PeriodicalId":20518,"journal":{"name":"Procedia Structural Integrity","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2452321624005067/pdf?md5=90fda43c3013956de570e9ca9a2c0863&pid=1-s2.0-S2452321624005067-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Residual Stress Map for 75Ni13.5Cr2.7B-3.5Si Clad 316 Stainless Steel\",\"authors\":\"Behrooz Tafazzolimoghaddam ,&nbsp;Hemant Kumar ,&nbsp;M. Krishnamoorthy ,&nbsp;Prince Joseph ,&nbsp;H.C. Dey ,&nbsp;C.R. Das ,&nbsp;Richard Moat\",\"doi\":\"10.1016/j.prostr.2024.05.077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Plasma Transfer Arc (PTA) process uses the intense heat of electric arc to melt and fuse the 75Ni13.5Cr2.7B-3.5Si hard-facing alloy and the base metal. This process develops substantial residual stresses near the hard-faced surfaces during deposition and subsequent solidification and cool down. Furthermore, when a material interface is present, additional residual stress is formed because of the thermal strain mismatch of the dissimilar materials caused by their different thermal expansion coefficients. These stresses can cause cracks in the overlay during the component’s service life or even earlier during manufacturing which can lead to partial or total loss of the part structural integrity. To start optimizing the process to avoid these defects, it is necessary to know the residual stress distribution in the part and how it is related to the process parameters. Hard-faced components are having distinct microstructures with a step change in material properties, and this makes the residual stress measurement more challenging. This paper presents 2D residual stress maps of the deposit cross sections for PTA hard-faced samples using the contour method. This study is part of an ongoing research on the influence of process parameters on the residual stress and local microstructure of 75Ni13.5Cr2.7B-3.5Si clad 316 stainless steel.</p></div>\",\"PeriodicalId\":20518,\"journal\":{\"name\":\"Procedia Structural Integrity\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2452321624005067/pdf?md5=90fda43c3013956de570e9ca9a2c0863&pid=1-s2.0-S2452321624005067-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Procedia Structural Integrity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2452321624005067\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Procedia Structural Integrity","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452321624005067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

等离子转移弧(PTA)工艺利用电弧的高热熔化 75Ni13.5Cr2.7B-3.5Si 硬面合金和基体金属。这种工艺在沉积、凝固和冷却过程中会在硬面合金表面附近产生大量残余应力。此外,当存在材料界面时,由于热膨胀系数不同导致异种材料的热应变不匹配,也会形成额外的残余应力。这些应力可能会在部件的使用寿命期间,甚至在制造过程的早期,导致叠层出现裂缝,从而导致部件结构完整性的部分或全部丧失。为了开始优化工艺以避免这些缺陷,有必要了解部件中的残余应力分布以及它与工艺参数的关系。硬面零件具有独特的微观结构,其材料属性会发生阶跃变化,这使得残余应力测量更具挑战性。本文采用等值线法绘制了 PTA 硬面样品沉积截面的二维残余应力图。这项研究是正在进行的 "工艺参数对 75Ni13.5Cr2.7B-3.5Si 包覆 316 不锈钢残余应力和局部微观结构的影响 "研究的一部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Residual Stress Map for 75Ni13.5Cr2.7B-3.5Si Clad 316 Stainless Steel

Plasma Transfer Arc (PTA) process uses the intense heat of electric arc to melt and fuse the 75Ni13.5Cr2.7B-3.5Si hard-facing alloy and the base metal. This process develops substantial residual stresses near the hard-faced surfaces during deposition and subsequent solidification and cool down. Furthermore, when a material interface is present, additional residual stress is formed because of the thermal strain mismatch of the dissimilar materials caused by their different thermal expansion coefficients. These stresses can cause cracks in the overlay during the component’s service life or even earlier during manufacturing which can lead to partial or total loss of the part structural integrity. To start optimizing the process to avoid these defects, it is necessary to know the residual stress distribution in the part and how it is related to the process parameters. Hard-faced components are having distinct microstructures with a step change in material properties, and this makes the residual stress measurement more challenging. This paper presents 2D residual stress maps of the deposit cross sections for PTA hard-faced samples using the contour method. This study is part of an ongoing research on the influence of process parameters on the residual stress and local microstructure of 75Ni13.5Cr2.7B-3.5Si clad 316 stainless steel.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信