{"title":"矢量薛定谔算子的 Lp 最大正则性","authors":"Davide Addona , Vincenzo Leone , Luca Lorenzi , Abdelaziz Rhandi","doi":"10.1016/j.matpur.2024.05.010","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we consider the vector-valued Schrödinger operator <span><math><mo>−</mo><mi>Δ</mi><mo>+</mo><mi>V</mi></math></span>, where the potential term <em>V</em> is a matrix-valued function whose entries belong to <span><math><msubsup><mrow><mi>L</mi></mrow><mrow><mi>loc</mi></mrow><mrow><mn>1</mn></mrow></msubsup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span> and, for every <span><math><mi>x</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>, <span><math><mi>V</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> is a symmetric and nonnegative definite matrix, with non positive off-diagonal terms and with eigenvalues comparable each other. For this class of potential terms we obtain maximal inequality in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>,</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>)</mo></math></span>. Assuming further that the minimal eigenvalue of <em>V</em> belongs to some reverse Hölder class of order <span><math><mi>q</mi><mo>∈</mo><mo>(</mo><mn>1</mn><mo>,</mo><mo>∞</mo><mo>)</mo><mo>∪</mo><mo>{</mo><mo>∞</mo><mo>}</mo></math></span>, we obtain maximal inequality in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>,</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>)</mo></math></span>, for <em>p</em> in between 1 and some <em>q</em>, and generation results.</p></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"187 ","pages":"Pages 171-206"},"PeriodicalIF":2.1000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lp maximal regularity for vector-valued Schrödinger operators\",\"authors\":\"Davide Addona , Vincenzo Leone , Luca Lorenzi , Abdelaziz Rhandi\",\"doi\":\"10.1016/j.matpur.2024.05.010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper we consider the vector-valued Schrödinger operator <span><math><mo>−</mo><mi>Δ</mi><mo>+</mo><mi>V</mi></math></span>, where the potential term <em>V</em> is a matrix-valued function whose entries belong to <span><math><msubsup><mrow><mi>L</mi></mrow><mrow><mi>loc</mi></mrow><mrow><mn>1</mn></mrow></msubsup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span> and, for every <span><math><mi>x</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>, <span><math><mi>V</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> is a symmetric and nonnegative definite matrix, with non positive off-diagonal terms and with eigenvalues comparable each other. For this class of potential terms we obtain maximal inequality in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>,</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>)</mo></math></span>. Assuming further that the minimal eigenvalue of <em>V</em> belongs to some reverse Hölder class of order <span><math><mi>q</mi><mo>∈</mo><mo>(</mo><mn>1</mn><mo>,</mo><mo>∞</mo><mo>)</mo><mo>∪</mo><mo>{</mo><mo>∞</mo><mo>}</mo></math></span>, we obtain maximal inequality in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>,</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>)</mo></math></span>, for <em>p</em> in between 1 and some <em>q</em>, and generation results.</p></div>\",\"PeriodicalId\":51071,\"journal\":{\"name\":\"Journal de Mathematiques Pures et Appliquees\",\"volume\":\"187 \",\"pages\":\"Pages 171-206\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal de Mathematiques Pures et Appliquees\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021782424000576\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de Mathematiques Pures et Appliquees","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782424000576","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
在本文中,我们考虑了矢量薛定谔算子 -Δ+V,其中势项 V 是一个矩阵值函数,其项属于 Lloc1(Rd),并且对于每个 x∈Rd,V(x) 是一个对称的非负定矩阵,具有非正对角项,并且特征值相互可比。对于这一类势项,我们可以在 L1(Rd,Rm) 中得到最大不等式。进一步假定 V 的最小特征值属于阶数 q∈(1,∞)∪{∞} 的某个反向荷尔德类,对于 p 介于 1 和某个 q 之间,我们将得到 Lp(Rd,Rm) 中的最大不等式,并产生结果。
Lp maximal regularity for vector-valued Schrödinger operators
In this paper we consider the vector-valued Schrödinger operator , where the potential term V is a matrix-valued function whose entries belong to and, for every , is a symmetric and nonnegative definite matrix, with non positive off-diagonal terms and with eigenvalues comparable each other. For this class of potential terms we obtain maximal inequality in . Assuming further that the minimal eigenvalue of V belongs to some reverse Hölder class of order , we obtain maximal inequality in , for p in between 1 and some q, and generation results.
期刊介绍:
Published from 1836 by the leading French mathematicians, the Journal des Mathématiques Pures et Appliquées is the second oldest international mathematical journal in the world. It was founded by Joseph Liouville and published continuously by leading French Mathematicians - among the latest: Jean Leray, Jacques-Louis Lions, Paul Malliavin and presently Pierre-Louis Lions.