球面扇形和锥形半线性椭圆方程的对称破缺与不稳定性

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Giulio Ciraolo , Filomena Pacella , Camilla Chiara Polvara
{"title":"球面扇形和锥形半线性椭圆方程的对称破缺与不稳定性","authors":"Giulio Ciraolo ,&nbsp;Filomena Pacella ,&nbsp;Camilla Chiara Polvara","doi":"10.1016/j.matpur.2024.05.004","DOIUrl":null,"url":null,"abstract":"<div><p>We consider semilinear elliptic equations with mixed boundary conditions in spherical sectors inside a cone. The aim of the paper is to show that a radial symmetry result of Gidas-Ni-Nirenberg type for positive solutions does not hold in general nonconvex cones. This symmetry breaking result is achieved by studying the Morse index of radial positive solutions and analyzing how it depends on the domain D on the unit sphere which spans the cone. In particular it is proved that the Neumann eigenvalues of the Laplace Beltrami operator on D play a role in computing the Morse index. A similar breaking of symmetry result is obtained for the positive solutions of the critical Neumann problem in the whole unbounded cone. In this case it is proved that the standard bubbles, which are the only radial solutions, become unstable for a class of nonconvex cones.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0021782424000515/pdfft?md5=f8d91cb0d64ebc67a3dd4f2bea70bb4e&pid=1-s2.0-S0021782424000515-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Symmetry breaking and instability for semilinear elliptic equations in spherical sectors and cones\",\"authors\":\"Giulio Ciraolo ,&nbsp;Filomena Pacella ,&nbsp;Camilla Chiara Polvara\",\"doi\":\"10.1016/j.matpur.2024.05.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider semilinear elliptic equations with mixed boundary conditions in spherical sectors inside a cone. The aim of the paper is to show that a radial symmetry result of Gidas-Ni-Nirenberg type for positive solutions does not hold in general nonconvex cones. This symmetry breaking result is achieved by studying the Morse index of radial positive solutions and analyzing how it depends on the domain D on the unit sphere which spans the cone. In particular it is proved that the Neumann eigenvalues of the Laplace Beltrami operator on D play a role in computing the Morse index. A similar breaking of symmetry result is obtained for the positive solutions of the critical Neumann problem in the whole unbounded cone. In this case it is proved that the standard bubbles, which are the only radial solutions, become unstable for a class of nonconvex cones.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0021782424000515/pdfft?md5=f8d91cb0d64ebc67a3dd4f2bea70bb4e&pid=1-s2.0-S0021782424000515-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021782424000515\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782424000515","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑的是在圆锥内部球面扇形中具有混合边界条件的半线性椭圆方程。本文的目的是证明,正解的 Gidas-Ni-Nirenberg 型径向对称性结果在一般非凸圆锥中不成立。这一打破对称性的结果是通过研究径向正解的莫尔斯指数并分析它如何依赖于横跨圆锥的单位球面上的域 D 来实现的。研究特别证明,D 上拉普拉斯-贝尔特拉米算子的诺伊曼特征值在计算莫尔斯指数时起作用。对于临界诺依曼问题在整个无界锥体上的正解,也得到了类似的对称性破缺结果。在这种情况下,证明了标准气泡(唯一的径向解)对于一类非凸圆锥变得不稳定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Symmetry breaking and instability for semilinear elliptic equations in spherical sectors and cones

We consider semilinear elliptic equations with mixed boundary conditions in spherical sectors inside a cone. The aim of the paper is to show that a radial symmetry result of Gidas-Ni-Nirenberg type for positive solutions does not hold in general nonconvex cones. This symmetry breaking result is achieved by studying the Morse index of radial positive solutions and analyzing how it depends on the domain D on the unit sphere which spans the cone. In particular it is proved that the Neumann eigenvalues of the Laplace Beltrami operator on D play a role in computing the Morse index. A similar breaking of symmetry result is obtained for the positive solutions of the critical Neumann problem in the whole unbounded cone. In this case it is proved that the standard bubbles, which are the only radial solutions, become unstable for a class of nonconvex cones.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信