{"title":"G 半简单代数","authors":"Rasool Hafezi , Abdolnaser Bahlekeh","doi":"10.1016/j.jpaa.2024.107738","DOIUrl":null,"url":null,"abstract":"<div><p>Let Λ be an Artin algebra and <span><math><mrow><mi>mod</mi></mrow><mtext>-</mtext><mo>(</mo><munder><mrow><mrow><mi>Gprj</mi></mrow></mrow><mo>_</mo></munder><mtext>-</mtext><mi>Λ</mi><mo>)</mo></math></span> the category of finitely presented functors over the stable category <span><math><munder><mrow><mrow><mi>Gprj</mi></mrow></mrow><mo>_</mo></munder><mtext>-</mtext><mi>Λ</mi></math></span> of finitely generated Gorenstein projective Λ-modules. This paper deals with those algebras Λ in which <span><math><mrow><mi>mod</mi></mrow><mtext>-</mtext><mo>(</mo><munder><mrow><mrow><mi>Gprj</mi></mrow></mrow><mo>_</mo></munder><mtext>-</mtext><mi>Λ</mi><mo>)</mo></math></span> is a semisimple abelian category, and we call G-semisimple algebras. We study some basic properties of such algebras. In particular, it will be observed that the class of G-semisimple algebras contains important classes of algebras, including gentle algebras and more generally quadratic monomial algebras. Next, we construct an epivalence (called representation equivalence in the terminology of Auslander), i.e. a full and dense functor that reflects isomorphisms, from the stable category of Gorenstein projective representations <span><math><munder><mrow><mrow><mi>Gprj</mi></mrow></mrow><mo>_</mo></munder><mo>(</mo><mi>Q</mi><mo>,</mo><mi>Λ</mi><mo>)</mo></math></span> of a finite acyclic quiver <span><math><mi>Q</mi></math></span> to the category of representations <span><math><mrow><mi>rep</mi></mrow><mo>(</mo><mi>Q</mi><mo>,</mo><munder><mrow><mrow><mi>Gprj</mi></mrow></mrow><mo>_</mo></munder><mtext>-</mtext><mi>Λ</mi><mo>)</mo></math></span> over <span><math><munder><mrow><mrow><mi>Gprj</mi></mrow></mrow><mo>_</mo></munder><mtext>-</mtext><mi>Λ</mi></math></span>, provided Λ is a G-semisimple algebra over an algebraic closed field. Using this, we will show that the path algebra <span><math><mi>Λ</mi><mi>Q</mi></math></span> of the G-semisimple algebra Λ is <span><math><mi>CM</mi></math></span>-finite if and only if <span><math><mi>Q</mi></math></span> is Dynkin. In the last part, we provide a complete classification of indecomposable Gorenstein projective representations within <span><math><mrow><mi>Gprj</mi></mrow><mo>(</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><mi>Λ</mi><mo>)</mo></math></span> of the linear quiver <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> over a G-semisimple algebra Λ. We also determine almost split sequences in <span><math><mrow><mi>Gprj</mi></mrow><mo>(</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><mi>Λ</mi><mo>)</mo></math></span> with certain ending terms. We apply these results to obtain insights into the cardinality of the components of the stable Auslander-Reiten quiver <span><math><mrow><mi>Gprj</mi></mrow><mo>(</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><mi>Λ</mi><mo>)</mo></math></span>.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"G-semisimple algebras\",\"authors\":\"Rasool Hafezi , Abdolnaser Bahlekeh\",\"doi\":\"10.1016/j.jpaa.2024.107738\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let Λ be an Artin algebra and <span><math><mrow><mi>mod</mi></mrow><mtext>-</mtext><mo>(</mo><munder><mrow><mrow><mi>Gprj</mi></mrow></mrow><mo>_</mo></munder><mtext>-</mtext><mi>Λ</mi><mo>)</mo></math></span> the category of finitely presented functors over the stable category <span><math><munder><mrow><mrow><mi>Gprj</mi></mrow></mrow><mo>_</mo></munder><mtext>-</mtext><mi>Λ</mi></math></span> of finitely generated Gorenstein projective Λ-modules. This paper deals with those algebras Λ in which <span><math><mrow><mi>mod</mi></mrow><mtext>-</mtext><mo>(</mo><munder><mrow><mrow><mi>Gprj</mi></mrow></mrow><mo>_</mo></munder><mtext>-</mtext><mi>Λ</mi><mo>)</mo></math></span> is a semisimple abelian category, and we call G-semisimple algebras. We study some basic properties of such algebras. In particular, it will be observed that the class of G-semisimple algebras contains important classes of algebras, including gentle algebras and more generally quadratic monomial algebras. Next, we construct an epivalence (called representation equivalence in the terminology of Auslander), i.e. a full and dense functor that reflects isomorphisms, from the stable category of Gorenstein projective representations <span><math><munder><mrow><mrow><mi>Gprj</mi></mrow></mrow><mo>_</mo></munder><mo>(</mo><mi>Q</mi><mo>,</mo><mi>Λ</mi><mo>)</mo></math></span> of a finite acyclic quiver <span><math><mi>Q</mi></math></span> to the category of representations <span><math><mrow><mi>rep</mi></mrow><mo>(</mo><mi>Q</mi><mo>,</mo><munder><mrow><mrow><mi>Gprj</mi></mrow></mrow><mo>_</mo></munder><mtext>-</mtext><mi>Λ</mi><mo>)</mo></math></span> over <span><math><munder><mrow><mrow><mi>Gprj</mi></mrow></mrow><mo>_</mo></munder><mtext>-</mtext><mi>Λ</mi></math></span>, provided Λ is a G-semisimple algebra over an algebraic closed field. Using this, we will show that the path algebra <span><math><mi>Λ</mi><mi>Q</mi></math></span> of the G-semisimple algebra Λ is <span><math><mi>CM</mi></math></span>-finite if and only if <span><math><mi>Q</mi></math></span> is Dynkin. In the last part, we provide a complete classification of indecomposable Gorenstein projective representations within <span><math><mrow><mi>Gprj</mi></mrow><mo>(</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><mi>Λ</mi><mo>)</mo></math></span> of the linear quiver <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> over a G-semisimple algebra Λ. We also determine almost split sequences in <span><math><mrow><mi>Gprj</mi></mrow><mo>(</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><mi>Λ</mi><mo>)</mo></math></span> with certain ending terms. We apply these results to obtain insights into the cardinality of the components of the stable Auslander-Reiten quiver <span><math><mrow><mi>Gprj</mi></mrow><mo>(</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><mi>Λ</mi><mo>)</mo></math></span>.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002240492400135X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002240492400135X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Let Λ be an Artin algebra and the category of finitely presented functors over the stable category of finitely generated Gorenstein projective Λ-modules. This paper deals with those algebras Λ in which is a semisimple abelian category, and we call G-semisimple algebras. We study some basic properties of such algebras. In particular, it will be observed that the class of G-semisimple algebras contains important classes of algebras, including gentle algebras and more generally quadratic monomial algebras. Next, we construct an epivalence (called representation equivalence in the terminology of Auslander), i.e. a full and dense functor that reflects isomorphisms, from the stable category of Gorenstein projective representations of a finite acyclic quiver to the category of representations over , provided Λ is a G-semisimple algebra over an algebraic closed field. Using this, we will show that the path algebra of the G-semisimple algebra Λ is -finite if and only if is Dynkin. In the last part, we provide a complete classification of indecomposable Gorenstein projective representations within of the linear quiver over a G-semisimple algebra Λ. We also determine almost split sequences in with certain ending terms. We apply these results to obtain insights into the cardinality of the components of the stable Auslander-Reiten quiver .