G 半简单代数

Pub Date : 2024-05-28 DOI:10.1016/j.jpaa.2024.107738
Rasool Hafezi , Abdolnaser Bahlekeh
{"title":"G 半简单代数","authors":"Rasool Hafezi ,&nbsp;Abdolnaser Bahlekeh","doi":"10.1016/j.jpaa.2024.107738","DOIUrl":null,"url":null,"abstract":"<div><p>Let Λ be an Artin algebra and <span><math><mrow><mi>mod</mi></mrow><mtext>-</mtext><mo>(</mo><munder><mrow><mrow><mi>Gprj</mi></mrow></mrow><mo>_</mo></munder><mtext>-</mtext><mi>Λ</mi><mo>)</mo></math></span> the category of finitely presented functors over the stable category <span><math><munder><mrow><mrow><mi>Gprj</mi></mrow></mrow><mo>_</mo></munder><mtext>-</mtext><mi>Λ</mi></math></span> of finitely generated Gorenstein projective Λ-modules. This paper deals with those algebras Λ in which <span><math><mrow><mi>mod</mi></mrow><mtext>-</mtext><mo>(</mo><munder><mrow><mrow><mi>Gprj</mi></mrow></mrow><mo>_</mo></munder><mtext>-</mtext><mi>Λ</mi><mo>)</mo></math></span> is a semisimple abelian category, and we call G-semisimple algebras. We study some basic properties of such algebras. In particular, it will be observed that the class of G-semisimple algebras contains important classes of algebras, including gentle algebras and more generally quadratic monomial algebras. Next, we construct an epivalence (called representation equivalence in the terminology of Auslander), i.e. a full and dense functor that reflects isomorphisms, from the stable category of Gorenstein projective representations <span><math><munder><mrow><mrow><mi>Gprj</mi></mrow></mrow><mo>_</mo></munder><mo>(</mo><mi>Q</mi><mo>,</mo><mi>Λ</mi><mo>)</mo></math></span> of a finite acyclic quiver <span><math><mi>Q</mi></math></span> to the category of representations <span><math><mrow><mi>rep</mi></mrow><mo>(</mo><mi>Q</mi><mo>,</mo><munder><mrow><mrow><mi>Gprj</mi></mrow></mrow><mo>_</mo></munder><mtext>-</mtext><mi>Λ</mi><mo>)</mo></math></span> over <span><math><munder><mrow><mrow><mi>Gprj</mi></mrow></mrow><mo>_</mo></munder><mtext>-</mtext><mi>Λ</mi></math></span>, provided Λ is a G-semisimple algebra over an algebraic closed field. Using this, we will show that the path algebra <span><math><mi>Λ</mi><mi>Q</mi></math></span> of the G-semisimple algebra Λ is <span><math><mi>CM</mi></math></span>-finite if and only if <span><math><mi>Q</mi></math></span> is Dynkin. In the last part, we provide a complete classification of indecomposable Gorenstein projective representations within <span><math><mrow><mi>Gprj</mi></mrow><mo>(</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><mi>Λ</mi><mo>)</mo></math></span> of the linear quiver <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> over a G-semisimple algebra Λ. We also determine almost split sequences in <span><math><mrow><mi>Gprj</mi></mrow><mo>(</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><mi>Λ</mi><mo>)</mo></math></span> with certain ending terms. We apply these results to obtain insights into the cardinality of the components of the stable Auslander-Reiten quiver <span><math><mrow><mi>Gprj</mi></mrow><mo>(</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><mi>Λ</mi><mo>)</mo></math></span>.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"G-semisimple algebras\",\"authors\":\"Rasool Hafezi ,&nbsp;Abdolnaser Bahlekeh\",\"doi\":\"10.1016/j.jpaa.2024.107738\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let Λ be an Artin algebra and <span><math><mrow><mi>mod</mi></mrow><mtext>-</mtext><mo>(</mo><munder><mrow><mrow><mi>Gprj</mi></mrow></mrow><mo>_</mo></munder><mtext>-</mtext><mi>Λ</mi><mo>)</mo></math></span> the category of finitely presented functors over the stable category <span><math><munder><mrow><mrow><mi>Gprj</mi></mrow></mrow><mo>_</mo></munder><mtext>-</mtext><mi>Λ</mi></math></span> of finitely generated Gorenstein projective Λ-modules. This paper deals with those algebras Λ in which <span><math><mrow><mi>mod</mi></mrow><mtext>-</mtext><mo>(</mo><munder><mrow><mrow><mi>Gprj</mi></mrow></mrow><mo>_</mo></munder><mtext>-</mtext><mi>Λ</mi><mo>)</mo></math></span> is a semisimple abelian category, and we call G-semisimple algebras. We study some basic properties of such algebras. In particular, it will be observed that the class of G-semisimple algebras contains important classes of algebras, including gentle algebras and more generally quadratic monomial algebras. Next, we construct an epivalence (called representation equivalence in the terminology of Auslander), i.e. a full and dense functor that reflects isomorphisms, from the stable category of Gorenstein projective representations <span><math><munder><mrow><mrow><mi>Gprj</mi></mrow></mrow><mo>_</mo></munder><mo>(</mo><mi>Q</mi><mo>,</mo><mi>Λ</mi><mo>)</mo></math></span> of a finite acyclic quiver <span><math><mi>Q</mi></math></span> to the category of representations <span><math><mrow><mi>rep</mi></mrow><mo>(</mo><mi>Q</mi><mo>,</mo><munder><mrow><mrow><mi>Gprj</mi></mrow></mrow><mo>_</mo></munder><mtext>-</mtext><mi>Λ</mi><mo>)</mo></math></span> over <span><math><munder><mrow><mrow><mi>Gprj</mi></mrow></mrow><mo>_</mo></munder><mtext>-</mtext><mi>Λ</mi></math></span>, provided Λ is a G-semisimple algebra over an algebraic closed field. Using this, we will show that the path algebra <span><math><mi>Λ</mi><mi>Q</mi></math></span> of the G-semisimple algebra Λ is <span><math><mi>CM</mi></math></span>-finite if and only if <span><math><mi>Q</mi></math></span> is Dynkin. In the last part, we provide a complete classification of indecomposable Gorenstein projective representations within <span><math><mrow><mi>Gprj</mi></mrow><mo>(</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><mi>Λ</mi><mo>)</mo></math></span> of the linear quiver <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> over a G-semisimple algebra Λ. We also determine almost split sequences in <span><math><mrow><mi>Gprj</mi></mrow><mo>(</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><mi>Λ</mi><mo>)</mo></math></span> with certain ending terms. We apply these results to obtain insights into the cardinality of the components of the stable Auslander-Reiten quiver <span><math><mrow><mi>Gprj</mi></mrow><mo>(</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><mi>Λ</mi><mo>)</mo></math></span>.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002240492400135X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002240492400135X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设Λ是阿廷代数,mod-(Gprj_-Λ)是有限生成的戈伦斯坦射影Λ模块的稳定类别 Gprj_-Λ 上的有限呈现函数类别。本文讨论的是 mod-(Gprj_-Λ)是半简单无性范畴的那些代数Λ,我们称之为 G-半简单代数。我们将研究这类代数的一些基本性质。特别是,我们会发现 G-semisimple 对象包含一些重要的对象,包括温和对象和更广义的二次单项式对象。接下来,我们将构建一个表等价性(用奥斯兰德的术语称为表征等价性),即从有限无环四元组 Q 的戈伦斯坦投影表示的稳定范畴 Gprj_(Q,Λ)到 Gprj_-Λ 上的表示范畴 rep(Q,Gprj_-Λ),条件是Λ是代数闭域上的 G-semisimple 代数。利用这一点,我们将证明,当且仅当 Q 是 Dynkin 时,G-semisimple 代数Λ 的路径代数ΛQ 是 CM 有限的。在最后一部分,我们提供了在 G-semisple 代数Λ 上的线性四元组 An 的 Gprj(An,Λ) 内不可分解的戈伦斯坦投影表示的完整分类。我们还确定了 Gprj(An,Λ) 中具有某些结束项的几乎分裂序列。我们运用这些结果,深入了解了稳定的奥斯兰-雷腾四元组 Gprj(An,Λ) 各组成部分的心性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
G-semisimple algebras

Let Λ be an Artin algebra and mod-(Gprj_-Λ) the category of finitely presented functors over the stable category Gprj_-Λ of finitely generated Gorenstein projective Λ-modules. This paper deals with those algebras Λ in which mod-(Gprj_-Λ) is a semisimple abelian category, and we call G-semisimple algebras. We study some basic properties of such algebras. In particular, it will be observed that the class of G-semisimple algebras contains important classes of algebras, including gentle algebras and more generally quadratic monomial algebras. Next, we construct an epivalence (called representation equivalence in the terminology of Auslander), i.e. a full and dense functor that reflects isomorphisms, from the stable category of Gorenstein projective representations Gprj_(Q,Λ) of a finite acyclic quiver Q to the category of representations rep(Q,Gprj_-Λ) over Gprj_-Λ, provided Λ is a G-semisimple algebra over an algebraic closed field. Using this, we will show that the path algebra ΛQ of the G-semisimple algebra Λ is CM-finite if and only if Q is Dynkin. In the last part, we provide a complete classification of indecomposable Gorenstein projective representations within Gprj(An,Λ) of the linear quiver An over a G-semisimple algebra Λ. We also determine almost split sequences in Gprj(An,Λ) with certain ending terms. We apply these results to obtain insights into the cardinality of the components of the stable Auslander-Reiten quiver Gprj(An,Λ).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信