颅内动脉瘤壁上破裂点和出血点的分布表明 ACom 和 MCA 动脉瘤的破裂模式截然不同。

IF 2.2 4区 医学 Q3 ENGINEERING, BIOMEDICAL
Yogesh Karnam, Fernando Mut, Alexander K. Yu, Boyle Cheng, Sepideh Amin-Hanjani, Fady T. Charbel, Henry H. Woo, Mika Niemelä, Riikka Tulamo, Behnam Rezai Jahromi, Juhana Frösen, Yasutaka Tobe, Anne M. Robertson, Juan R. Cebral
{"title":"颅内动脉瘤壁上破裂点和出血点的分布表明 ACom 和 MCA 动脉瘤的破裂模式截然不同。","authors":"Yogesh Karnam,&nbsp;Fernando Mut,&nbsp;Alexander K. Yu,&nbsp;Boyle Cheng,&nbsp;Sepideh Amin-Hanjani,&nbsp;Fady T. Charbel,&nbsp;Henry H. Woo,&nbsp;Mika Niemelä,&nbsp;Riikka Tulamo,&nbsp;Behnam Rezai Jahromi,&nbsp;Juhana Frösen,&nbsp;Yasutaka Tobe,&nbsp;Anne M. Robertson,&nbsp;Juan R. Cebral","doi":"10.1002/cnm.3837","DOIUrl":null,"url":null,"abstract":"<p>The mechanisms behind intracranial aneurysm formation and rupture are not fully understood, with factors such as location, patient demographics, and hemodynamics playing a role. Additionally, the significance of anatomical features like blebs in ruptures is debated. This highlights the necessity for comprehensive research that combines patient-specific risk factors with a detailed analysis of local hemodynamic characteristics at bleb and rupture sites. Our study analyzed 359 intracranial aneurysms from 268 patients, reconstructing patient-specific models for hemodynamic simulations based on 3D rotational angiographic images and intraoperative videos. We identified aneurysm subregions and delineated rupture sites, characterizing blebs and their regional overlap, employing statistical comparisons across demographics, and other risk factors. This work identifies patterns in aneurysm rupture sites, predominantly at the dome, with variations across patient demographics. Hypertensive and anterior communicating artery (ACom) aneurysms showed specific rupture patterns and bleb associations, indicating two pathways: high-flow in ACom with thin blebs at impingement sites and low-flow, oscillatory conditions in middle cerebral artery (MCA) aneurysms fostering thick blebs. Bleb characteristics varied with gender, age, and smoking, linking rupture risks to hemodynamic factors and patient profiles. These insights enhance understanding of the hemodynamic mechanisms leading to rupture events. This analysis elucidates the role of localized hemodynamics in intracranial aneurysm rupture, challenging the emphasis on location by revealing how flow variations influence stability and risk. We identify two pathways to wall failure—high-flow and low-flow conditions—highlighting the complexity of aneurysm behavior. Additionally, this research advances our knowledge of how inherent patient-specific characteristics impact these processes, which need further investigation.</p>","PeriodicalId":50349,"journal":{"name":"International Journal for Numerical Methods in Biomedical Engineering","volume":"40 8","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11315635/pdf/","citationCount":"0","resultStr":"{\"title\":\"Distribution of rupture sites and blebs on intracranial aneurysm walls suggests distinct rupture patterns in ACom and MCA aneurysms\",\"authors\":\"Yogesh Karnam,&nbsp;Fernando Mut,&nbsp;Alexander K. Yu,&nbsp;Boyle Cheng,&nbsp;Sepideh Amin-Hanjani,&nbsp;Fady T. Charbel,&nbsp;Henry H. Woo,&nbsp;Mika Niemelä,&nbsp;Riikka Tulamo,&nbsp;Behnam Rezai Jahromi,&nbsp;Juhana Frösen,&nbsp;Yasutaka Tobe,&nbsp;Anne M. Robertson,&nbsp;Juan R. Cebral\",\"doi\":\"10.1002/cnm.3837\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The mechanisms behind intracranial aneurysm formation and rupture are not fully understood, with factors such as location, patient demographics, and hemodynamics playing a role. Additionally, the significance of anatomical features like blebs in ruptures is debated. This highlights the necessity for comprehensive research that combines patient-specific risk factors with a detailed analysis of local hemodynamic characteristics at bleb and rupture sites. Our study analyzed 359 intracranial aneurysms from 268 patients, reconstructing patient-specific models for hemodynamic simulations based on 3D rotational angiographic images and intraoperative videos. We identified aneurysm subregions and delineated rupture sites, characterizing blebs and their regional overlap, employing statistical comparisons across demographics, and other risk factors. This work identifies patterns in aneurysm rupture sites, predominantly at the dome, with variations across patient demographics. Hypertensive and anterior communicating artery (ACom) aneurysms showed specific rupture patterns and bleb associations, indicating two pathways: high-flow in ACom with thin blebs at impingement sites and low-flow, oscillatory conditions in middle cerebral artery (MCA) aneurysms fostering thick blebs. Bleb characteristics varied with gender, age, and smoking, linking rupture risks to hemodynamic factors and patient profiles. These insights enhance understanding of the hemodynamic mechanisms leading to rupture events. This analysis elucidates the role of localized hemodynamics in intracranial aneurysm rupture, challenging the emphasis on location by revealing how flow variations influence stability and risk. We identify two pathways to wall failure—high-flow and low-flow conditions—highlighting the complexity of aneurysm behavior. Additionally, this research advances our knowledge of how inherent patient-specific characteristics impact these processes, which need further investigation.</p>\",\"PeriodicalId\":50349,\"journal\":{\"name\":\"International Journal for Numerical Methods in Biomedical Engineering\",\"volume\":\"40 8\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11315635/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Numerical Methods in Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cnm.3837\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical Methods in Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cnm.3837","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

颅内动脉瘤形成和破裂背后的机制尚未完全明了,位置、患者人口统计学和血液动力学等因素都起着作用。此外,对出血点等解剖学特征在破裂中的意义也存在争议。这凸显了将患者特异性风险因素与详细分析出血点和破裂部位的局部血流动力学特征相结合进行综合研究的必要性。我们的研究分析了 268 名患者的 359 个颅内动脉瘤,根据三维旋转血管造影图像和术中视频重建了患者特异性模型,用于血流动力学模拟。我们确定了动脉瘤亚区并划定了破裂部位,描述了出血点及其区域重叠情况,采用了跨人口统计学和其他风险因素的统计比较。这项工作确定了动脉瘤破裂部位的模式,主要是在穹顶处,不同患者的人口统计学特征存在差异。高血压动脉瘤和前交通动脉(ACom)动脉瘤显示出特定的破裂模式和出血点关联,表明有两种途径:ACom动脉瘤中的高流量和撞击部位的薄出血点,以及大脑中动脉(MCA)动脉瘤中的低流量、振荡条件和厚出血点。出血点特征因性别、年龄和吸烟而异,这将破裂风险与血液动力学因素和患者特征联系起来。这些见解加深了人们对导致破裂事件的血液动力学机制的理解。这项分析阐明了局部血流动力学在颅内动脉瘤破裂中的作用,通过揭示血流变化如何影响稳定性和风险,对强调位置的观点提出了挑战。我们确定了动脉瘤壁破裂的两种途径--高流量和低流量条件--凸显了动脉瘤行为的复杂性。此外,这项研究还增进了我们对患者固有的特异性特征如何影响这些过程的了解,这些过程还需要进一步研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Distribution of rupture sites and blebs on intracranial aneurysm walls suggests distinct rupture patterns in ACom and MCA aneurysms

Distribution of rupture sites and blebs on intracranial aneurysm walls suggests distinct rupture patterns in ACom and MCA aneurysms

The mechanisms behind intracranial aneurysm formation and rupture are not fully understood, with factors such as location, patient demographics, and hemodynamics playing a role. Additionally, the significance of anatomical features like blebs in ruptures is debated. This highlights the necessity for comprehensive research that combines patient-specific risk factors with a detailed analysis of local hemodynamic characteristics at bleb and rupture sites. Our study analyzed 359 intracranial aneurysms from 268 patients, reconstructing patient-specific models for hemodynamic simulations based on 3D rotational angiographic images and intraoperative videos. We identified aneurysm subregions and delineated rupture sites, characterizing blebs and their regional overlap, employing statistical comparisons across demographics, and other risk factors. This work identifies patterns in aneurysm rupture sites, predominantly at the dome, with variations across patient demographics. Hypertensive and anterior communicating artery (ACom) aneurysms showed specific rupture patterns and bleb associations, indicating two pathways: high-flow in ACom with thin blebs at impingement sites and low-flow, oscillatory conditions in middle cerebral artery (MCA) aneurysms fostering thick blebs. Bleb characteristics varied with gender, age, and smoking, linking rupture risks to hemodynamic factors and patient profiles. These insights enhance understanding of the hemodynamic mechanisms leading to rupture events. This analysis elucidates the role of localized hemodynamics in intracranial aneurysm rupture, challenging the emphasis on location by revealing how flow variations influence stability and risk. We identify two pathways to wall failure—high-flow and low-flow conditions—highlighting the complexity of aneurysm behavior. Additionally, this research advances our knowledge of how inherent patient-specific characteristics impact these processes, which need further investigation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal for Numerical Methods in Biomedical Engineering
International Journal for Numerical Methods in Biomedical Engineering ENGINEERING, BIOMEDICAL-MATHEMATICAL & COMPUTATIONAL BIOLOGY
CiteScore
4.50
自引率
9.50%
发文量
103
审稿时长
3 months
期刊介绍: All differential equation based models for biomedical applications and their novel solutions (using either established numerical methods such as finite difference, finite element and finite volume methods or new numerical methods) are within the scope of this journal. Manuscripts with experimental and analytical themes are also welcome if a component of the paper deals with numerical methods. Special cases that may not involve differential equations such as image processing, meshing and artificial intelligence are within the scope. Any research that is broadly linked to the wellbeing of the human body, either directly or indirectly, is also within the scope of this journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信