{"title":"在心脏互感任务中,鼻内催产素可提高互感的准确性和心跳诱发电位。","authors":"","doi":"10.1016/j.bpsc.2024.05.004","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Interoception represents perception of the internal bodily state, which is closely associated with social/emotional processing and physical health in humans. Understanding the mechanism that underlies interoceptive processing, particularly its modulation, is therefore of great importance. Given the overlap between oxytocinergic pathways and interoceptive signaling substrates in both peripheral visceral organs and the brain, intranasal oxytocin administration is a promising approach for modulating interoceptive processing.</div></div><div><h3>Methods</h3><div><span>Using a double-blind, placebo-controlled, between-participant design, we recruited 72 healthy male participants who performed a cardiac interoceptive task during electroencephalograph and electrocardiograph recording to examine whether intranasal administration of the </span>neuropeptide oxytocin could modulate interoceptive processing. We also collected data in a resting state to examine whether we could replicate previous findings.</div></div><div><h3>Results</h3><div>The results showed that in the interoceptive task, oxytocin increased interoceptive accuracy at the behavioral level, which was paralleled by larger heartbeat-evoked potential amplitudes in frontocentral and central regions on the neural level. However, there were no significant effects of oxytocin on electroencephalograph or electrocardiograph during resting state.</div></div><div><h3>Conclusions</h3><div>These findings suggest that oxytocin may only have a facilitatory effect on interoceptive processing under task-based conditions. Our findings not only provide new insights into the modulation of interoceptive processing via targeting the oxytocinergic system but also provide proof-of-concept evidence for the therapeutic potential of intranasal oxytocin in mental disorders with dysfunctional interoception.</div></div>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intranasal Oxytocin Improves Interoceptive Accuracy and Heartbeat-Evoked Potentials During a Cardiac Interoceptive Task\",\"authors\":\"\",\"doi\":\"10.1016/j.bpsc.2024.05.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><div>Interoception represents perception of the internal bodily state, which is closely associated with social/emotional processing and physical health in humans. Understanding the mechanism that underlies interoceptive processing, particularly its modulation, is therefore of great importance. Given the overlap between oxytocinergic pathways and interoceptive signaling substrates in both peripheral visceral organs and the brain, intranasal oxytocin administration is a promising approach for modulating interoceptive processing.</div></div><div><h3>Methods</h3><div><span>Using a double-blind, placebo-controlled, between-participant design, we recruited 72 healthy male participants who performed a cardiac interoceptive task during electroencephalograph and electrocardiograph recording to examine whether intranasal administration of the </span>neuropeptide oxytocin could modulate interoceptive processing. We also collected data in a resting state to examine whether we could replicate previous findings.</div></div><div><h3>Results</h3><div>The results showed that in the interoceptive task, oxytocin increased interoceptive accuracy at the behavioral level, which was paralleled by larger heartbeat-evoked potential amplitudes in frontocentral and central regions on the neural level. However, there were no significant effects of oxytocin on electroencephalograph or electrocardiograph during resting state.</div></div><div><h3>Conclusions</h3><div>These findings suggest that oxytocin may only have a facilitatory effect on interoceptive processing under task-based conditions. Our findings not only provide new insights into the modulation of interoceptive processing via targeting the oxytocinergic system but also provide proof-of-concept evidence for the therapeutic potential of intranasal oxytocin in mental disorders with dysfunctional interoception.</div></div>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S245190222400137X\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S245190222400137X","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Intranasal Oxytocin Improves Interoceptive Accuracy and Heartbeat-Evoked Potentials During a Cardiac Interoceptive Task
Background
Interoception represents perception of the internal bodily state, which is closely associated with social/emotional processing and physical health in humans. Understanding the mechanism that underlies interoceptive processing, particularly its modulation, is therefore of great importance. Given the overlap between oxytocinergic pathways and interoceptive signaling substrates in both peripheral visceral organs and the brain, intranasal oxytocin administration is a promising approach for modulating interoceptive processing.
Methods
Using a double-blind, placebo-controlled, between-participant design, we recruited 72 healthy male participants who performed a cardiac interoceptive task during electroencephalograph and electrocardiograph recording to examine whether intranasal administration of the neuropeptide oxytocin could modulate interoceptive processing. We also collected data in a resting state to examine whether we could replicate previous findings.
Results
The results showed that in the interoceptive task, oxytocin increased interoceptive accuracy at the behavioral level, which was paralleled by larger heartbeat-evoked potential amplitudes in frontocentral and central regions on the neural level. However, there were no significant effects of oxytocin on electroencephalograph or electrocardiograph during resting state.
Conclusions
These findings suggest that oxytocin may only have a facilitatory effect on interoceptive processing under task-based conditions. Our findings not only provide new insights into the modulation of interoceptive processing via targeting the oxytocinergic system but also provide proof-of-concept evidence for the therapeutic potential of intranasal oxytocin in mental disorders with dysfunctional interoception.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.