评估受信息普查影响的生存结果的预后生物标志物。

IF 1.6 3区 医学 Q3 HEALTH CARE SCIENCES & SERVICES
Statistical Methods in Medical Research Pub Date : 2024-08-01 Epub Date: 2024-06-06 DOI:10.1177/09622802241259170
Wei Liu, Danping Liu, Zhiwei Zhang
{"title":"评估受信息普查影响的生存结果的预后生物标志物。","authors":"Wei Liu, Danping Liu, Zhiwei Zhang","doi":"10.1177/09622802241259170","DOIUrl":null,"url":null,"abstract":"<p><p>Prognostic biomarkers for survival outcomes are widely used in clinical research and practice. Such biomarkers are often evaluated using a C-index as well as quantities based on time-dependent receiver operating characteristic curves. Existing methods for their evaluation generally assume that censoring is uninformative in the sense that the censoring time is independent of the failure time with or without conditioning on the biomarker under evaluation. With focus on the C-index and the area under a particular receiver operating characteristic curve, we describe and compare three estimation methods that account for informative censoring based on observed baseline covariates. Two of them are straightforward extensions of existing plug-in and inverse probability weighting methods for uninformative censoring. By appealing to semiparametric theory, we also develop a doubly robust, locally efficient method that is more robust than the plug-in and inverse probability weighting methods and typically more efficient than the inverse probability weighting method. The methods are evaluated and compared in a simulation study, and applied to real data from studies of breast cancer and heart failure.</p>","PeriodicalId":22038,"journal":{"name":"Statistical Methods in Medical Research","volume":" ","pages":"1342-1354"},"PeriodicalIF":1.6000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluating prognostic biomarkers for survival outcomes subject to informative censoring.\",\"authors\":\"Wei Liu, Danping Liu, Zhiwei Zhang\",\"doi\":\"10.1177/09622802241259170\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Prognostic biomarkers for survival outcomes are widely used in clinical research and practice. Such biomarkers are often evaluated using a C-index as well as quantities based on time-dependent receiver operating characteristic curves. Existing methods for their evaluation generally assume that censoring is uninformative in the sense that the censoring time is independent of the failure time with or without conditioning on the biomarker under evaluation. With focus on the C-index and the area under a particular receiver operating characteristic curve, we describe and compare three estimation methods that account for informative censoring based on observed baseline covariates. Two of them are straightforward extensions of existing plug-in and inverse probability weighting methods for uninformative censoring. By appealing to semiparametric theory, we also develop a doubly robust, locally efficient method that is more robust than the plug-in and inverse probability weighting methods and typically more efficient than the inverse probability weighting method. The methods are evaluated and compared in a simulation study, and applied to real data from studies of breast cancer and heart failure.</p>\",\"PeriodicalId\":22038,\"journal\":{\"name\":\"Statistical Methods in Medical Research\",\"volume\":\" \",\"pages\":\"1342-1354\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Methods in Medical Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/09622802241259170\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Methods in Medical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/09622802241259170","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/6 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

摘要

预示生存结果的生物标志物被广泛应用于临床研究和实践中。此类生物标志物通常使用 C 指数以及基于时间依赖性接收者工作特征曲线的数量进行评估。现有的评估方法通常假定普查是无信息的,即普查时间与评估生物标志物的失败时间无关。以 C 指数和特定接收者工作特征曲线下的面积为重点,我们描述并比较了三种基于观测到的基线协变量考虑信息性剔除的估算方法。其中两种方法是对现有插件和反概率加权方法的直接扩展,用于非信息性删减。通过利用半参数理论,我们还开发了一种双重稳健、局部有效的方法,它比插入式和反概率加权法更稳健,通常比反概率加权法更有效。我们在模拟研究中对这些方法进行了评估和比较,并将其应用于乳腺癌和心力衰竭研究的真实数据中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluating prognostic biomarkers for survival outcomes subject to informative censoring.

Prognostic biomarkers for survival outcomes are widely used in clinical research and practice. Such biomarkers are often evaluated using a C-index as well as quantities based on time-dependent receiver operating characteristic curves. Existing methods for their evaluation generally assume that censoring is uninformative in the sense that the censoring time is independent of the failure time with or without conditioning on the biomarker under evaluation. With focus on the C-index and the area under a particular receiver operating characteristic curve, we describe and compare three estimation methods that account for informative censoring based on observed baseline covariates. Two of them are straightforward extensions of existing plug-in and inverse probability weighting methods for uninformative censoring. By appealing to semiparametric theory, we also develop a doubly robust, locally efficient method that is more robust than the plug-in and inverse probability weighting methods and typically more efficient than the inverse probability weighting method. The methods are evaluated and compared in a simulation study, and applied to real data from studies of breast cancer and heart failure.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Statistical Methods in Medical Research
Statistical Methods in Medical Research 医学-数学与计算生物学
CiteScore
4.10
自引率
4.30%
发文量
127
审稿时长
>12 weeks
期刊介绍: Statistical Methods in Medical Research is a peer reviewed scholarly journal and is the leading vehicle for articles in all the main areas of medical statistics and an essential reference for all medical statisticians. This unique journal is devoted solely to statistics and medicine and aims to keep professionals abreast of the many powerful statistical techniques now available to the medical profession. This journal is a member of the Committee on Publication Ethics (COPE)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信