多层电子光学有源光子集成电路平台中的边界态连续引导模式。

IF 8.4 1区 物理与天体物理 Q1 OPTICS
Optica Pub Date : 2024-01-01 DOI:10.1364/OPTICA.516044
Kyunghun Han, Thomas W Lebrun, Vladimir A Aksyuk
{"title":"多层电子光学有源光子集成电路平台中的边界态连续引导模式。","authors":"Kyunghun Han, Thomas W Lebrun, Vladimir A Aksyuk","doi":"10.1364/OPTICA.516044","DOIUrl":null,"url":null,"abstract":"<p><p>In many physical systems, the interaction with an open environment leads to energy dissipation and reduced coherence, making it challenging to control these systems effectively. In the context of wave phenomena, such lossy interactions can be specifically controlled to isolate the system, a condition known as a bound-state-in-continuum (BIC). Despite the recent advances in engineered BICs for photonic waveguiding, practical implementations are still largely polarization- and geometry-specific, and the underlying principles remain to be systematically explored. Here, we theoretically and experimentally study low loss BIC photonic waveguiding within a two-layer heterogeneous electro-optically active integrated photonic platform. We show that coupling to the slab wave continuum can be selectively suppressed for guided modes with different polarizations and spatial structure. We demonstrate a low-loss same-polarization quasi-BIC guided mode enabling a high extinction Mach-Zehnder electro-optic amplitude modulator within a single Si<sub>3</sub>N<sub>4</sub> ridge waveguide integrated with an extended LiNbO<sub>3</sub> slab layer. By elucidating the broad BIC waveguiding principles and demonstrating them in an industry-relevant photonic configuration, this work may inspire innovative approaches to photonic applications such as switching and filtering. The broader impact of this work extends beyond photonics, influencing research in other wave dynamics disciplines, including microwave and acoustics.</p>","PeriodicalId":19515,"journal":{"name":"Optica","volume":"11 5","pages":""},"PeriodicalIF":8.4000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11151840/pdf/","citationCount":"0","resultStr":"{\"title\":\"Bound-state-in-continuum guided modes in a multilayer electro-optically active photonic integrated circuit platform.\",\"authors\":\"Kyunghun Han, Thomas W Lebrun, Vladimir A Aksyuk\",\"doi\":\"10.1364/OPTICA.516044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In many physical systems, the interaction with an open environment leads to energy dissipation and reduced coherence, making it challenging to control these systems effectively. In the context of wave phenomena, such lossy interactions can be specifically controlled to isolate the system, a condition known as a bound-state-in-continuum (BIC). Despite the recent advances in engineered BICs for photonic waveguiding, practical implementations are still largely polarization- and geometry-specific, and the underlying principles remain to be systematically explored. Here, we theoretically and experimentally study low loss BIC photonic waveguiding within a two-layer heterogeneous electro-optically active integrated photonic platform. We show that coupling to the slab wave continuum can be selectively suppressed for guided modes with different polarizations and spatial structure. We demonstrate a low-loss same-polarization quasi-BIC guided mode enabling a high extinction Mach-Zehnder electro-optic amplitude modulator within a single Si<sub>3</sub>N<sub>4</sub> ridge waveguide integrated with an extended LiNbO<sub>3</sub> slab layer. By elucidating the broad BIC waveguiding principles and demonstrating them in an industry-relevant photonic configuration, this work may inspire innovative approaches to photonic applications such as switching and filtering. The broader impact of this work extends beyond photonics, influencing research in other wave dynamics disciplines, including microwave and acoustics.</p>\",\"PeriodicalId\":19515,\"journal\":{\"name\":\"Optica\",\"volume\":\"11 5\",\"pages\":\"\"},\"PeriodicalIF\":8.4000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11151840/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optica\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1364/OPTICA.516044\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optica","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/OPTICA.516044","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

在许多物理系统中,与开放环境的相互作用会导致能量耗散和相干性降低,从而给有效控制这些系统带来挑战。在波现象中,这种有损的相互作用可以通过专门控制来隔离系统,这种情况被称为 "连续束缚态"(bound-state-in-contuum,BIC)。尽管用于光子波导的工程 BIC 取得了最新进展,但实际应用在很大程度上仍与偏振和几何形状有关,其基本原理仍有待系统探索。在此,我们对双层异质电光活性集成光子平台内的低损耗 BIC 光子波导进行了理论和实验研究。我们证明,对于具有不同极化和空间结构的导波模式,可以选择性地抑制与板坯波连续体的耦合。我们展示了一种低损耗的同偏振准 BIC 导向模式,这种模式可以在集成了扩展铌酸锂板层的单个 Si3N4 脊波导内实现高消光马赫-泽恩德电光振幅调制器。通过阐明广泛的 BIC 波导原理,并在与工业相关的光子配置中进行演示,这项工作可能会激发开关和滤波等光子应用的创新方法。这项工作的广泛影响超越了光子学,影响到其他波动力学学科的研究,包括微波和声学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bound-state-in-continuum guided modes in a multilayer electro-optically active photonic integrated circuit platform.

In many physical systems, the interaction with an open environment leads to energy dissipation and reduced coherence, making it challenging to control these systems effectively. In the context of wave phenomena, such lossy interactions can be specifically controlled to isolate the system, a condition known as a bound-state-in-continuum (BIC). Despite the recent advances in engineered BICs for photonic waveguiding, practical implementations are still largely polarization- and geometry-specific, and the underlying principles remain to be systematically explored. Here, we theoretically and experimentally study low loss BIC photonic waveguiding within a two-layer heterogeneous electro-optically active integrated photonic platform. We show that coupling to the slab wave continuum can be selectively suppressed for guided modes with different polarizations and spatial structure. We demonstrate a low-loss same-polarization quasi-BIC guided mode enabling a high extinction Mach-Zehnder electro-optic amplitude modulator within a single Si3N4 ridge waveguide integrated with an extended LiNbO3 slab layer. By elucidating the broad BIC waveguiding principles and demonstrating them in an industry-relevant photonic configuration, this work may inspire innovative approaches to photonic applications such as switching and filtering. The broader impact of this work extends beyond photonics, influencing research in other wave dynamics disciplines, including microwave and acoustics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Optica
Optica OPTICS-
CiteScore
19.70
自引率
2.90%
发文量
191
审稿时长
2 months
期刊介绍: Optica is an open access, online-only journal published monthly by Optica Publishing Group. It is dedicated to the rapid dissemination of high-impact peer-reviewed research in the field of optics and photonics. The journal provides a forum for theoretical or experimental, fundamental or applied research to be swiftly accessed by the international community. Optica is abstracted and indexed in Chemical Abstracts Service, Current Contents/Physical, Chemical & Earth Sciences, and Science Citation Index Expanded.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信