{"title":"亚洲月水母(Aurelia coerulea)息肉产生荚囊的外胚层起源和组织再分化。","authors":"Hideki Ikeda","doi":"10.1002/jmor.21711","DOIUrl":null,"url":null,"abstract":"<p>The histological origin of podocysts in scyphozoans has long been undetermined, with uncertainty whether they arise from mesenchymal amoebocytes or stalk and pedal disc ectoderm in polyps. Histological investigation on the pedal disc was difficult due to the settlement of polyps on hard substrates. In this study, we investigated the histological characteristics of polyps during podocyst production in Asian moon jelly (<i>Aurelia coerulea</i>) with utilizing those attached on thin polystyrene substrates. Fine histological features of the pedal disc became possible after the substrates were decomposed during histological processing. Our findings unequivocally demonstrate that the cell mass of podocysts originates from the ectoderm of the pedal disc and the stalk without the involvement of amoebocytes in the mesoglea. Preceding the podocyst formation, the pedal disc undergoes enlargement facilitated by the elongated stalk ectodermal cells, which attach to a substrate. Subsequently, the pedal disc ectoderm give rise to the primary podocyst cells with accumulating nutrient granules in the cytoplasm and forming the cyst capsule cooperatively with the invaginated pedal disc ectoderm. Direct transformation from the ectodermal cells to podocyst cells suggests that podocyst formation involves tissue dedifferentiation. Throughout the period of podocyst production, the gastrodermis of polyps is physically separated from the ectoderm by the mesoglea and shows no histological changes, and no amoebocytes appear in the mesoglea. These histological properties are totally different from those in other modes of asexual reproduction, which incorporate the endoderm of polyps, suggesting the developmental and evolutionary differences between these asexual reproductions and podocyst production in Scyphozoa.</p>","PeriodicalId":16528,"journal":{"name":"Journal of Morphology","volume":"285 6","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ectodermal origin and tissue dedifferentiation in the podocyst production by the polyps of the Asian moon jelly (Aurelia coerulea)\",\"authors\":\"Hideki Ikeda\",\"doi\":\"10.1002/jmor.21711\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The histological origin of podocysts in scyphozoans has long been undetermined, with uncertainty whether they arise from mesenchymal amoebocytes or stalk and pedal disc ectoderm in polyps. Histological investigation on the pedal disc was difficult due to the settlement of polyps on hard substrates. In this study, we investigated the histological characteristics of polyps during podocyst production in Asian moon jelly (<i>Aurelia coerulea</i>) with utilizing those attached on thin polystyrene substrates. Fine histological features of the pedal disc became possible after the substrates were decomposed during histological processing. Our findings unequivocally demonstrate that the cell mass of podocysts originates from the ectoderm of the pedal disc and the stalk without the involvement of amoebocytes in the mesoglea. Preceding the podocyst formation, the pedal disc undergoes enlargement facilitated by the elongated stalk ectodermal cells, which attach to a substrate. Subsequently, the pedal disc ectoderm give rise to the primary podocyst cells with accumulating nutrient granules in the cytoplasm and forming the cyst capsule cooperatively with the invaginated pedal disc ectoderm. Direct transformation from the ectodermal cells to podocyst cells suggests that podocyst formation involves tissue dedifferentiation. Throughout the period of podocyst production, the gastrodermis of polyps is physically separated from the ectoderm by the mesoglea and shows no histological changes, and no amoebocytes appear in the mesoglea. These histological properties are totally different from those in other modes of asexual reproduction, which incorporate the endoderm of polyps, suggesting the developmental and evolutionary differences between these asexual reproductions and podocyst production in Scyphozoa.</p>\",\"PeriodicalId\":16528,\"journal\":{\"name\":\"Journal of Morphology\",\"volume\":\"285 6\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Morphology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jmor.21711\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ANATOMY & MORPHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Morphology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jmor.21711","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
Ectodermal origin and tissue dedifferentiation in the podocyst production by the polyps of the Asian moon jelly (Aurelia coerulea)
The histological origin of podocysts in scyphozoans has long been undetermined, with uncertainty whether they arise from mesenchymal amoebocytes or stalk and pedal disc ectoderm in polyps. Histological investigation on the pedal disc was difficult due to the settlement of polyps on hard substrates. In this study, we investigated the histological characteristics of polyps during podocyst production in Asian moon jelly (Aurelia coerulea) with utilizing those attached on thin polystyrene substrates. Fine histological features of the pedal disc became possible after the substrates were decomposed during histological processing. Our findings unequivocally demonstrate that the cell mass of podocysts originates from the ectoderm of the pedal disc and the stalk without the involvement of amoebocytes in the mesoglea. Preceding the podocyst formation, the pedal disc undergoes enlargement facilitated by the elongated stalk ectodermal cells, which attach to a substrate. Subsequently, the pedal disc ectoderm give rise to the primary podocyst cells with accumulating nutrient granules in the cytoplasm and forming the cyst capsule cooperatively with the invaginated pedal disc ectoderm. Direct transformation from the ectodermal cells to podocyst cells suggests that podocyst formation involves tissue dedifferentiation. Throughout the period of podocyst production, the gastrodermis of polyps is physically separated from the ectoderm by the mesoglea and shows no histological changes, and no amoebocytes appear in the mesoglea. These histological properties are totally different from those in other modes of asexual reproduction, which incorporate the endoderm of polyps, suggesting the developmental and evolutionary differences between these asexual reproductions and podocyst production in Scyphozoa.
期刊介绍:
The Journal of Morphology welcomes articles of original research in cytology, protozoology, embryology, and general morphology. Articles generally should not exceed 35 printed pages. Preliminary notices or articles of a purely descriptive morphological or taxonomic nature are not included. No paper which has already been published will be accepted, nor will simultaneous publications elsewhere be allowed.
The Journal of Morphology publishes research in functional, comparative, evolutionary and developmental morphology from vertebrates and invertebrates. Human and veterinary anatomy or paleontology are considered when an explicit connection to neontological animal morphology is presented, and the paper contains relevant information for the community of animal morphologists. Based on our long tradition, we continue to seek publishing the best papers in animal morphology.