开启希望:GSK-3 抑制剂和 Wnt 通路激活在阿尔茨海默氏症治疗中的应用。

IF 4.3 4区 医学 Q1 PHARMACOLOGY & PHARMACY
Journal of Drug Targeting Pub Date : 2024-09-01 Epub Date: 2024-06-11 DOI:10.1080/1061186X.2024.2365263
Magham Sai Varshini, Ramakkamma Aishwarya Reddy, Praveen Thaggikuppe Krishnamurthy
{"title":"开启希望:GSK-3 抑制剂和 Wnt 通路激活在阿尔茨海默氏症治疗中的应用。","authors":"Magham Sai Varshini, Ramakkamma Aishwarya Reddy, Praveen Thaggikuppe Krishnamurthy","doi":"10.1080/1061186X.2024.2365263","DOIUrl":null,"url":null,"abstract":"<p><p>Alzheimer's disease (AD) is a complex neurodegenerative disorder characterised by progressive cognitive decline and the accumulation of amyloid-β plaques and tau tangles. The Wnt signalling pathway known for its crucial role in neurodevelopment and adult neurogenesis has emerged as a potential target for therapeutic intervention in AD. Glycogen synthase kinase-3 beta (GSK-3β), a key regulator of the Wnt pathway, plays a pivotal role in AD pathogenesis by promoting tau hyperphosphorylation and neuroinflammation. Several preclinical studies have demonstrated that inhibiting GSK-3β leads to the activation of Wnt pathway thereby promoting neuroprotective effects, and mitigating cognitive deficits in AD animal models. The modulation of Wnt signalling appears to have multifaceted benefits including the reduction of amyloid-β production, tau hyperphosphorylation, enhancement of synaptic plasticity, and inhibition of neuroinflammation. These findings suggest that targeting GSK-3β to activate Wnt pathway may represent a novel approach for slowing or halting the progression of AD. This hypothesis reviews the current state of research exploring the activation of Wnt pathway through the inhibition of GSK-3β as a promising therapeutic strategy in AD.</p>","PeriodicalId":15573,"journal":{"name":"Journal of Drug Targeting","volume":" ","pages":"909-917"},"PeriodicalIF":4.3000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unlocking hope: GSK-3 inhibitors and Wnt pathway activation in Alzheimer's therapy.\",\"authors\":\"Magham Sai Varshini, Ramakkamma Aishwarya Reddy, Praveen Thaggikuppe Krishnamurthy\",\"doi\":\"10.1080/1061186X.2024.2365263\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Alzheimer's disease (AD) is a complex neurodegenerative disorder characterised by progressive cognitive decline and the accumulation of amyloid-β plaques and tau tangles. The Wnt signalling pathway known for its crucial role in neurodevelopment and adult neurogenesis has emerged as a potential target for therapeutic intervention in AD. Glycogen synthase kinase-3 beta (GSK-3β), a key regulator of the Wnt pathway, plays a pivotal role in AD pathogenesis by promoting tau hyperphosphorylation and neuroinflammation. Several preclinical studies have demonstrated that inhibiting GSK-3β leads to the activation of Wnt pathway thereby promoting neuroprotective effects, and mitigating cognitive deficits in AD animal models. The modulation of Wnt signalling appears to have multifaceted benefits including the reduction of amyloid-β production, tau hyperphosphorylation, enhancement of synaptic plasticity, and inhibition of neuroinflammation. These findings suggest that targeting GSK-3β to activate Wnt pathway may represent a novel approach for slowing or halting the progression of AD. This hypothesis reviews the current state of research exploring the activation of Wnt pathway through the inhibition of GSK-3β as a promising therapeutic strategy in AD.</p>\",\"PeriodicalId\":15573,\"journal\":{\"name\":\"Journal of Drug Targeting\",\"volume\":\" \",\"pages\":\"909-917\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Drug Targeting\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/1061186X.2024.2365263\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Drug Targeting","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/1061186X.2024.2365263","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/11 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

阿尔茨海默病(AD)是一种复杂的神经退行性疾病,其特征是认知能力逐渐下降,淀粉样β斑块和tau缠结不断累积。Wnt信号通路因其在神经发育和成人神经发生中的关键作用而闻名,现已成为治疗干预AD的潜在靶点。糖原合成酶激酶-3β(GSK-3β)是 Wnt 通路的一个关键调节因子,它通过促进 tau 过度磷酸化和神经炎症在 AD 发病机制中起着关键作用。几项临床前研究表明,抑制 GSK-3β 可导致 Wnt 通路的激活,从而促进神经保护作用,减轻 AD 动物模型的认知障碍。调节 Wnt 信号似乎有多方面的益处,包括减少淀粉样蛋白-β的产生、tau 过度磷酸化、增强突触可塑性和抑制神经炎症。这些研究结果表明,以 GSK-3β 为靶点激活 Wnt 通路可能是减缓或阻止 AD 进展的一种新方法。本假说回顾了通过抑制 GSK-3β 激活 Wnt 通路作为一种有前景的 AD 治疗策略的研究现状。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unlocking hope: GSK-3 inhibitors and Wnt pathway activation in Alzheimer's therapy.

Alzheimer's disease (AD) is a complex neurodegenerative disorder characterised by progressive cognitive decline and the accumulation of amyloid-β plaques and tau tangles. The Wnt signalling pathway known for its crucial role in neurodevelopment and adult neurogenesis has emerged as a potential target for therapeutic intervention in AD. Glycogen synthase kinase-3 beta (GSK-3β), a key regulator of the Wnt pathway, plays a pivotal role in AD pathogenesis by promoting tau hyperphosphorylation and neuroinflammation. Several preclinical studies have demonstrated that inhibiting GSK-3β leads to the activation of Wnt pathway thereby promoting neuroprotective effects, and mitigating cognitive deficits in AD animal models. The modulation of Wnt signalling appears to have multifaceted benefits including the reduction of amyloid-β production, tau hyperphosphorylation, enhancement of synaptic plasticity, and inhibition of neuroinflammation. These findings suggest that targeting GSK-3β to activate Wnt pathway may represent a novel approach for slowing or halting the progression of AD. This hypothesis reviews the current state of research exploring the activation of Wnt pathway through the inhibition of GSK-3β as a promising therapeutic strategy in AD.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.10
自引率
0.00%
发文量
165
审稿时长
2 months
期刊介绍: Journal of Drug Targeting publishes papers and reviews on all aspects of drug delivery and targeting for molecular and macromolecular drugs including the design and characterization of carrier systems (whether colloidal, protein or polymeric) for both vitro and/or in vivo applications of these drugs. Papers are not restricted to drugs delivered by way of a carrier, but also include studies on molecular and macromolecular drugs that are designed to target specific cellular or extra-cellular molecules. As such the journal publishes results on the activity, delivery and targeting of therapeutic peptides/proteins and nucleic acids including genes/plasmid DNA, gene silencing nucleic acids (e.g. small interfering (si)RNA, antisense oligonucleotides, ribozymes, DNAzymes), as well as aptamers, mononucleotides and monoclonal antibodies and their conjugates. The diagnostic application of targeting technologies as well as targeted delivery of diagnostic and imaging agents also fall within the scope of the journal. In addition, papers are sought on self-regulating systems, systems responsive to their environment and to external stimuli and those that can produce programmed, pulsed and otherwise complex delivery patterns.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信