Rajat Vashistha, Mustafa M Almuqbel, Nick J Palmer, Ross J Keenan, Kevin Gilbert, Scott Wells, Andrew Lynch, Andrew Li, Stephen Kingston-Smith, Tracy R Melzer, Gregor Koerzdoerfer, Kieran O'Brien
{"title":"评估深度学习 TSE 图像在临床肌肉骨骼成像中的应用。","authors":"Rajat Vashistha, Mustafa M Almuqbel, Nick J Palmer, Ross J Keenan, Kevin Gilbert, Scott Wells, Andrew Lynch, Andrew Li, Stephen Kingston-Smith, Tracy R Melzer, Gregor Koerzdoerfer, Kieran O'Brien","doi":"10.1111/1754-9485.13714","DOIUrl":null,"url":null,"abstract":"<p>In this study, we compared the fat-saturated (FS) and non-FS turbo spin echo (TSE) magnetic resonance imaging knee sequences reconstructed conventionally (conventional-TSE) against a deep learning-based reconstruction of accelerated TSE (DL-TSE) scans. A total of 232 conventional-TSE and DL-TSE image pairs were acquired for comparison. For each consenting patient, one of the clinically acquired conventional-TSE proton density-weighted sequences in the sagittal or coronal planes (FS and non-FS), or in the axial plane (non-FS), was repeated using a research DL-TSE sequence. The DL-TSE reconstruction resulted in an image resolution that increased by at least 45% and scan times that were up to 52% faster compared to the conventional TSE. All images were acquired on a MAGNETOM Vida 3T scanner (Siemens Healthineers AG, Erlangen, Germany). The reporting radiologists, blinded to the acquisition time, were requested to qualitatively compare the DL-TSE against the conventional-TSE reconstructions. Despite having a faster acquisition time, the DL-TSE was rated to depict smaller structures better for 139/232 (60%) cases, equivalent for 72/232 (31%) cases and worse for 21/232 (9%) cases compared to the conventional-TSE. Overall, the radiologists preferred the DL-TSE reconstruction in 124/232 (53%) cases and stated no preference, implying equivalence, for 65/232 (28%) cases. DL-TSE reconstructions enabled faster acquisition times while enhancing spatial resolution and preserving the image contrast. From these results, the DL-TSE provided added or comparable clinical value and utility in less time. DL-TSE offers the opportunity to further reduce the overall examination time and improve patient comfort with no loss in diagnostic accuracy.</p>","PeriodicalId":16218,"journal":{"name":"Journal of Medical Imaging and Radiation Oncology","volume":"68 5","pages":"556-563"},"PeriodicalIF":2.2000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1754-9485.13714","citationCount":"0","resultStr":"{\"title\":\"Evaluation of deep-learning TSE images in clinical musculoskeletal imaging\",\"authors\":\"Rajat Vashistha, Mustafa M Almuqbel, Nick J Palmer, Ross J Keenan, Kevin Gilbert, Scott Wells, Andrew Lynch, Andrew Li, Stephen Kingston-Smith, Tracy R Melzer, Gregor Koerzdoerfer, Kieran O'Brien\",\"doi\":\"10.1111/1754-9485.13714\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this study, we compared the fat-saturated (FS) and non-FS turbo spin echo (TSE) magnetic resonance imaging knee sequences reconstructed conventionally (conventional-TSE) against a deep learning-based reconstruction of accelerated TSE (DL-TSE) scans. A total of 232 conventional-TSE and DL-TSE image pairs were acquired for comparison. For each consenting patient, one of the clinically acquired conventional-TSE proton density-weighted sequences in the sagittal or coronal planes (FS and non-FS), or in the axial plane (non-FS), was repeated using a research DL-TSE sequence. The DL-TSE reconstruction resulted in an image resolution that increased by at least 45% and scan times that were up to 52% faster compared to the conventional TSE. All images were acquired on a MAGNETOM Vida 3T scanner (Siemens Healthineers AG, Erlangen, Germany). The reporting radiologists, blinded to the acquisition time, were requested to qualitatively compare the DL-TSE against the conventional-TSE reconstructions. Despite having a faster acquisition time, the DL-TSE was rated to depict smaller structures better for 139/232 (60%) cases, equivalent for 72/232 (31%) cases and worse for 21/232 (9%) cases compared to the conventional-TSE. Overall, the radiologists preferred the DL-TSE reconstruction in 124/232 (53%) cases and stated no preference, implying equivalence, for 65/232 (28%) cases. DL-TSE reconstructions enabled faster acquisition times while enhancing spatial resolution and preserving the image contrast. From these results, the DL-TSE provided added or comparable clinical value and utility in less time. DL-TSE offers the opportunity to further reduce the overall examination time and improve patient comfort with no loss in diagnostic accuracy.</p>\",\"PeriodicalId\":16218,\"journal\":{\"name\":\"Journal of Medical Imaging and Radiation Oncology\",\"volume\":\"68 5\",\"pages\":\"556-563\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1754-9485.13714\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Medical Imaging and Radiation Oncology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1754-9485.13714\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Imaging and Radiation Oncology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1754-9485.13714","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Evaluation of deep-learning TSE images in clinical musculoskeletal imaging
In this study, we compared the fat-saturated (FS) and non-FS turbo spin echo (TSE) magnetic resonance imaging knee sequences reconstructed conventionally (conventional-TSE) against a deep learning-based reconstruction of accelerated TSE (DL-TSE) scans. A total of 232 conventional-TSE and DL-TSE image pairs were acquired for comparison. For each consenting patient, one of the clinically acquired conventional-TSE proton density-weighted sequences in the sagittal or coronal planes (FS and non-FS), or in the axial plane (non-FS), was repeated using a research DL-TSE sequence. The DL-TSE reconstruction resulted in an image resolution that increased by at least 45% and scan times that were up to 52% faster compared to the conventional TSE. All images were acquired on a MAGNETOM Vida 3T scanner (Siemens Healthineers AG, Erlangen, Germany). The reporting radiologists, blinded to the acquisition time, were requested to qualitatively compare the DL-TSE against the conventional-TSE reconstructions. Despite having a faster acquisition time, the DL-TSE was rated to depict smaller structures better for 139/232 (60%) cases, equivalent for 72/232 (31%) cases and worse for 21/232 (9%) cases compared to the conventional-TSE. Overall, the radiologists preferred the DL-TSE reconstruction in 124/232 (53%) cases and stated no preference, implying equivalence, for 65/232 (28%) cases. DL-TSE reconstructions enabled faster acquisition times while enhancing spatial resolution and preserving the image contrast. From these results, the DL-TSE provided added or comparable clinical value and utility in less time. DL-TSE offers the opportunity to further reduce the overall examination time and improve patient comfort with no loss in diagnostic accuracy.
期刊介绍:
Journal of Medical Imaging and Radiation Oncology (formerly Australasian Radiology) is the official journal of The Royal Australian and New Zealand College of Radiologists, publishing articles of scientific excellence in radiology and radiation oncology. Manuscripts are judged on the basis of their contribution of original data and ideas or interpretation. All articles are peer reviewed.