免疫调节聚(L-乳酸)纳米纤维膜通过抑制炎症、氧化和细菌感染促进糖尿病伤口愈合。

IF 6.3 1区 医学 Q1 DERMATOLOGY
Burns & Trauma Pub Date : 2024-06-05 eCollection Date: 2024-01-01 DOI:10.1093/burnst/tkae009
Yan Wu, Jin Zhang, Anqi Lin, Tinglin Zhang, Yong Liu, Chunlei Zhang, Yongkui Yin, Ran Guo, Jie Gao, Yulin Li, Yanhui Chu
{"title":"免疫调节聚(L-乳酸)纳米纤维膜通过抑制炎症、氧化和细菌感染促进糖尿病伤口愈合。","authors":"Yan Wu, Jin Zhang, Anqi Lin, Tinglin Zhang, Yong Liu, Chunlei Zhang, Yongkui Yin, Ran Guo, Jie Gao, Yulin Li, Yanhui Chu","doi":"10.1093/burnst/tkae009","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Given the significant impact on human health, it is imperative to develop novel treatment approaches for diabetic wounds, which are prevalent and serious complications of diabetes. The diabetic wound microenvironment has a high level of reactive oxygen species (ROS) and an imbalance between proinflammatory and anti-inflammatory cells/factors, which hamper the healing of chronic wounds. This study aimed to develop poly(L-lactic acid) (PLLA) nanofibrous membranes incorporating curcumin and silver nanoparticles (AgNPs), defined as PLLA/C/Ag, for diabetic wound healing.</p><p><strong>Methods: </strong>PLLA/C/Ag were fabricated via an air-jet spinning approach. The membranes underwent preparation and characterization through various techniques including Fourier-transform infrared spectroscopy, measurement of water contact angle, X-ray photoelectron spectroscopy, X-ray diffraction, scanning electron microscopy, assessment of <i>in vitro</i> release of curcumin and Ag<sup>+</sup>, testing of mechanical strength, flexibility, water absorption and biodegradability. In addition, the antioxidant, antibacterial and anti-inflammatory properties of the membranes were evaluated <i>in vitro</i>, and the ability of the membranes to heal wounds was tested <i>in vivo</i> using diabetic mice.</p><p><strong>Results: </strong>Loose hydrophilic nanofibrous membranes with uniform fibre sizes were prepared through air-jet spinning. The membranes enabled the efficient and sustained release of curcumin. More importantly, antibacterial AgNPs were successfully reduced <i>in situ</i> from AgNO<sub>3</sub>. The incorporation of AgNPs endowed the membrane with superior antibacterial activity, and the bioactivities of curcumin and the AgNPs gave the membrane efficient ROS scavenging and immunomodulatory effects, which protected cells from oxidative damage and reduced inflammation. Further results from animal studies indicated that the PLLA/C/Ag membranes had the most efficient wound healing properties, which were achieved by stimulating angiogenesis and collagen deposition and inhibiting inflammation.</p><p><strong>Conclusions: </strong>In this research, we successfully fabricated PLLA/C/Ag membranes that possess properties of antioxidants, antibacterial agents and anti-inflammatory agents, which can aid in the process of wound healing. Modulating wound inflammation, these new PLLA/C/Ag membranes serve as a novel dressing to enhance the healing of diabetic wounds.</p>","PeriodicalId":9553,"journal":{"name":"Burns & Trauma","volume":"12 ","pages":"tkae009"},"PeriodicalIF":6.3000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11151119/pdf/","citationCount":"0","resultStr":"{\"title\":\"Immunomodulatory poly(L-lactic acid) nanofibrous membranes promote diabetic wound healing by inhibiting inflammation, oxidation and bacterial infection.\",\"authors\":\"Yan Wu, Jin Zhang, Anqi Lin, Tinglin Zhang, Yong Liu, Chunlei Zhang, Yongkui Yin, Ran Guo, Jie Gao, Yulin Li, Yanhui Chu\",\"doi\":\"10.1093/burnst/tkae009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Given the significant impact on human health, it is imperative to develop novel treatment approaches for diabetic wounds, which are prevalent and serious complications of diabetes. The diabetic wound microenvironment has a high level of reactive oxygen species (ROS) and an imbalance between proinflammatory and anti-inflammatory cells/factors, which hamper the healing of chronic wounds. This study aimed to develop poly(L-lactic acid) (PLLA) nanofibrous membranes incorporating curcumin and silver nanoparticles (AgNPs), defined as PLLA/C/Ag, for diabetic wound healing.</p><p><strong>Methods: </strong>PLLA/C/Ag were fabricated via an air-jet spinning approach. The membranes underwent preparation and characterization through various techniques including Fourier-transform infrared spectroscopy, measurement of water contact angle, X-ray photoelectron spectroscopy, X-ray diffraction, scanning electron microscopy, assessment of <i>in vitro</i> release of curcumin and Ag<sup>+</sup>, testing of mechanical strength, flexibility, water absorption and biodegradability. In addition, the antioxidant, antibacterial and anti-inflammatory properties of the membranes were evaluated <i>in vitro</i>, and the ability of the membranes to heal wounds was tested <i>in vivo</i> using diabetic mice.</p><p><strong>Results: </strong>Loose hydrophilic nanofibrous membranes with uniform fibre sizes were prepared through air-jet spinning. The membranes enabled the efficient and sustained release of curcumin. More importantly, antibacterial AgNPs were successfully reduced <i>in situ</i> from AgNO<sub>3</sub>. The incorporation of AgNPs endowed the membrane with superior antibacterial activity, and the bioactivities of curcumin and the AgNPs gave the membrane efficient ROS scavenging and immunomodulatory effects, which protected cells from oxidative damage and reduced inflammation. Further results from animal studies indicated that the PLLA/C/Ag membranes had the most efficient wound healing properties, which were achieved by stimulating angiogenesis and collagen deposition and inhibiting inflammation.</p><p><strong>Conclusions: </strong>In this research, we successfully fabricated PLLA/C/Ag membranes that possess properties of antioxidants, antibacterial agents and anti-inflammatory agents, which can aid in the process of wound healing. Modulating wound inflammation, these new PLLA/C/Ag membranes serve as a novel dressing to enhance the healing of diabetic wounds.</p>\",\"PeriodicalId\":9553,\"journal\":{\"name\":\"Burns & Trauma\",\"volume\":\"12 \",\"pages\":\"tkae009\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11151119/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Burns & Trauma\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/burnst/tkae009\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"DERMATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Burns & Trauma","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/burnst/tkae009","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"DERMATOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:糖尿病伤口是普遍存在的严重糖尿病并发症,鉴于其对人类健康的重大影响,开发新型治疗方法势在必行。糖尿病伤口微环境中存在大量活性氧(ROS),以及促炎和抗炎细胞/因子之间的不平衡,这些都阻碍了慢性伤口的愈合。本研究旨在开发含有姜黄素和银纳米粒子(AgNPs)的聚乳酸(PLLA)纳米纤维膜(定义为 PLLA/C/Ag),用于糖尿病伤口愈合:方法:采用喷气纺丝法制造 PLLA/C/Ag。通过傅立叶变换红外光谱、水接触角测量、X 射线光电子能谱、X 射线衍射、扫描电子显微镜、姜黄素和 Ag+ 体外释放评估、机械强度、柔韧性、吸水性和生物降解性测试等多种技术对膜进行制备和表征。此外,还在体外评估了纳米纤维膜的抗氧化、抗菌和抗炎特性,并使用糖尿病小鼠在体内测试了纳米纤维膜愈合伤口的能力:结果:通过喷气纺丝制备出了纤维大小均匀的疏松亲水纳米纤维膜。结果:通过喷气纺丝制备出了尺寸均匀的疏松亲水纳米纤维膜,这种膜能够高效、持续地释放姜黄素。更重要的是,抗菌的 AgNPs 成功地从 AgNO3 中原位还原。AgNPs的加入使膜具有卓越的抗菌活性,姜黄素和AgNPs的生物活性使膜具有高效的清除ROS和免疫调节作用,从而保护细胞免受氧化损伤并减轻炎症反应。动物实验的进一步结果表明,PLLA/C/Ag 膜具有最有效的伤口愈合特性,它能刺激血管生成和胶原沉积,抑制炎症:在这项研究中,我们成功地制造出了具有抗氧化剂、抗菌剂和抗炎剂特性的 PLLA/C/Ag 膜,它们可以帮助伤口愈合。这些新型 PLLA/C/Ag 膜可调节伤口炎症,作为一种新型敷料促进糖尿病伤口的愈合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Immunomodulatory poly(L-lactic acid) nanofibrous membranes promote diabetic wound healing by inhibiting inflammation, oxidation and bacterial infection.

Background: Given the significant impact on human health, it is imperative to develop novel treatment approaches for diabetic wounds, which are prevalent and serious complications of diabetes. The diabetic wound microenvironment has a high level of reactive oxygen species (ROS) and an imbalance between proinflammatory and anti-inflammatory cells/factors, which hamper the healing of chronic wounds. This study aimed to develop poly(L-lactic acid) (PLLA) nanofibrous membranes incorporating curcumin and silver nanoparticles (AgNPs), defined as PLLA/C/Ag, for diabetic wound healing.

Methods: PLLA/C/Ag were fabricated via an air-jet spinning approach. The membranes underwent preparation and characterization through various techniques including Fourier-transform infrared spectroscopy, measurement of water contact angle, X-ray photoelectron spectroscopy, X-ray diffraction, scanning electron microscopy, assessment of in vitro release of curcumin and Ag+, testing of mechanical strength, flexibility, water absorption and biodegradability. In addition, the antioxidant, antibacterial and anti-inflammatory properties of the membranes were evaluated in vitro, and the ability of the membranes to heal wounds was tested in vivo using diabetic mice.

Results: Loose hydrophilic nanofibrous membranes with uniform fibre sizes were prepared through air-jet spinning. The membranes enabled the efficient and sustained release of curcumin. More importantly, antibacterial AgNPs were successfully reduced in situ from AgNO3. The incorporation of AgNPs endowed the membrane with superior antibacterial activity, and the bioactivities of curcumin and the AgNPs gave the membrane efficient ROS scavenging and immunomodulatory effects, which protected cells from oxidative damage and reduced inflammation. Further results from animal studies indicated that the PLLA/C/Ag membranes had the most efficient wound healing properties, which were achieved by stimulating angiogenesis and collagen deposition and inhibiting inflammation.

Conclusions: In this research, we successfully fabricated PLLA/C/Ag membranes that possess properties of antioxidants, antibacterial agents and anti-inflammatory agents, which can aid in the process of wound healing. Modulating wound inflammation, these new PLLA/C/Ag membranes serve as a novel dressing to enhance the healing of diabetic wounds.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Burns & Trauma
Burns & Trauma 医学-皮肤病学
CiteScore
8.40
自引率
9.40%
发文量
186
审稿时长
6 weeks
期刊介绍: The first open access journal in the field of burns and trauma injury in the Asia-Pacific region, Burns & Trauma publishes the latest developments in basic, clinical and translational research in the field. With a special focus on prevention, clinical treatment and basic research, the journal welcomes submissions in various aspects of biomaterials, tissue engineering, stem cells, critical care, immunobiology, skin transplantation, and the prevention and regeneration of burns and trauma injuries. With an expert Editorial Board and a team of dedicated scientific editors, the journal enjoys a large readership and is supported by Southwest Hospital, which covers authors'' article processing charges.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信