{"title":"吡拉西坦能减轻血管性痴呆体外模型中的氧化应激和线粒体功能损伤。","authors":"Juan Liu, Na Yang, Xiaomeng Wang, Wen Wang","doi":"10.1007/s00221-024-06868-x","DOIUrl":null,"url":null,"abstract":"<p><p>Vascular dementia (VaD) is the most common cause of dementia in older adults. Due to the lack of effective treatment options, there is an urgent need to find an effective pharmaceutical compound to combat VaD. Piracetam has been reported to improve impaired cognitive function in a variety of conditions in both human and animal models. However, the role and mechanism of Piracetam in VaD remain unclear. Therefore this study aimed to elucidate the effect of Piracetam on a cellular model of VaD in vitro. We found that Piracetam enhanced the growth of OGD-stimulated SH-SY5Y cells. In addition, Piracetam inhibited the oxidative stress of OGD-stimulated SH-SY5Y cells. Further, Piracetam improved mitochondrial function of OGD-stimulated SH-SY5Y cells. Mechanistically, Piracetam inhibited the PI3K/Akt/mTOR pathway in OGD-stimulated SH-SY5Y cells. Collectively, Piracetam improved oxidative stress and mitochondrial dysfunction of OGD-stimulated SH-SY5Y cells through PI3K/Akt/mTOR axis. Hence, Piracetam has the potential to serve as a promising drug of VaD.</p>","PeriodicalId":12268,"journal":{"name":"Experimental Brain Research","volume":" ","pages":"1841-1850"},"PeriodicalIF":1.7000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Piracetam reduces oxidative stress and mitochondrial function impairment in an in vitro model of vascular dementia.\",\"authors\":\"Juan Liu, Na Yang, Xiaomeng Wang, Wen Wang\",\"doi\":\"10.1007/s00221-024-06868-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Vascular dementia (VaD) is the most common cause of dementia in older adults. Due to the lack of effective treatment options, there is an urgent need to find an effective pharmaceutical compound to combat VaD. Piracetam has been reported to improve impaired cognitive function in a variety of conditions in both human and animal models. However, the role and mechanism of Piracetam in VaD remain unclear. Therefore this study aimed to elucidate the effect of Piracetam on a cellular model of VaD in vitro. We found that Piracetam enhanced the growth of OGD-stimulated SH-SY5Y cells. In addition, Piracetam inhibited the oxidative stress of OGD-stimulated SH-SY5Y cells. Further, Piracetam improved mitochondrial function of OGD-stimulated SH-SY5Y cells. Mechanistically, Piracetam inhibited the PI3K/Akt/mTOR pathway in OGD-stimulated SH-SY5Y cells. Collectively, Piracetam improved oxidative stress and mitochondrial dysfunction of OGD-stimulated SH-SY5Y cells through PI3K/Akt/mTOR axis. Hence, Piracetam has the potential to serve as a promising drug of VaD.</p>\",\"PeriodicalId\":12268,\"journal\":{\"name\":\"Experimental Brain Research\",\"volume\":\" \",\"pages\":\"1841-1850\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental Brain Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00221-024-06868-x\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Brain Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00221-024-06868-x","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/6 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Piracetam reduces oxidative stress and mitochondrial function impairment in an in vitro model of vascular dementia.
Vascular dementia (VaD) is the most common cause of dementia in older adults. Due to the lack of effective treatment options, there is an urgent need to find an effective pharmaceutical compound to combat VaD. Piracetam has been reported to improve impaired cognitive function in a variety of conditions in both human and animal models. However, the role and mechanism of Piracetam in VaD remain unclear. Therefore this study aimed to elucidate the effect of Piracetam on a cellular model of VaD in vitro. We found that Piracetam enhanced the growth of OGD-stimulated SH-SY5Y cells. In addition, Piracetam inhibited the oxidative stress of OGD-stimulated SH-SY5Y cells. Further, Piracetam improved mitochondrial function of OGD-stimulated SH-SY5Y cells. Mechanistically, Piracetam inhibited the PI3K/Akt/mTOR pathway in OGD-stimulated SH-SY5Y cells. Collectively, Piracetam improved oxidative stress and mitochondrial dysfunction of OGD-stimulated SH-SY5Y cells through PI3K/Akt/mTOR axis. Hence, Piracetam has the potential to serve as a promising drug of VaD.
期刊介绍:
Founded in 1966, Experimental Brain Research publishes original contributions on many aspects of experimental research of the central and peripheral nervous system. The focus is on molecular, physiology, behavior, neurochemistry, developmental, cellular and molecular neurobiology, and experimental pathology relevant to general problems of cerebral function. The journal publishes original papers, reviews, and mini-reviews.