Quan Liu, Zhongyao Hu, Wendan Cheng, Qinghua Xu, Zhengwei Wu
{"title":"一种经血浆改性的生物相容性纳米纤维,可用于成骨细胞的生长分化。","authors":"Quan Liu, Zhongyao Hu, Wendan Cheng, Qinghua Xu, Zhengwei Wu","doi":"10.1089/ten.TEC.2024.0099","DOIUrl":null,"url":null,"abstract":"<p><p>This work employs nitrogen plasma immersion ion implantation (PIII) to modify electrospinning polylactic acid membranes and immobilizes basic fibroblast growth factors (bFGF) by forming crosslinking bonds. The study investigates the modified membranes' surface characteristics and the stimulatory effects of crosslinked bFGF polylactic acid membranes on osteoblast and fibroblast proliferation. The PIII process occurs under low vacuum conditions and is controlled by processing time and power pulse width. The experimental results indicate that, within a 400-second N<sub>2</sub>-PIII treatment, the spun fibers remain undamaged, demonstrating an increase in hydrophilicity (from 117° to 38°/36°) and nitrogen content (from 0% to 7.54%/8.05%). X-ray photoelectron spectroscopy analysis suggests the formation of a C-N-C=O crosslinked bond. Cell culture and activity assessments indicate that the PIII-treated and crosslinked bFGF film exhibits significantly higher cell growth activity (<i>p</i> < 0.05) than the untreated group. These intergroup differences are attributed to the surface crosslinking bond content. In osteogenic induction, the results for each day show that the treated group performs better. However, the intergroup disparities within the crosslinked bFGF group disappear with prolonged culture time due to the rapid osteogenesis prompted by bFGF. The findings suggest that PIII treatment of electrospinning polylactic acid membranes holds promise in promoting osteogenesis in bone tissue scaffolds.</p>","PeriodicalId":23154,"journal":{"name":"Tissue engineering. Part C, Methods","volume":" ","pages":"268-278"},"PeriodicalIF":2.7000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Biocompatible Nanofibers Modified by Plasma for Osteoblast Growth Differentiation.\",\"authors\":\"Quan Liu, Zhongyao Hu, Wendan Cheng, Qinghua Xu, Zhengwei Wu\",\"doi\":\"10.1089/ten.TEC.2024.0099\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This work employs nitrogen plasma immersion ion implantation (PIII) to modify electrospinning polylactic acid membranes and immobilizes basic fibroblast growth factors (bFGF) by forming crosslinking bonds. The study investigates the modified membranes' surface characteristics and the stimulatory effects of crosslinked bFGF polylactic acid membranes on osteoblast and fibroblast proliferation. The PIII process occurs under low vacuum conditions and is controlled by processing time and power pulse width. The experimental results indicate that, within a 400-second N<sub>2</sub>-PIII treatment, the spun fibers remain undamaged, demonstrating an increase in hydrophilicity (from 117° to 38°/36°) and nitrogen content (from 0% to 7.54%/8.05%). X-ray photoelectron spectroscopy analysis suggests the formation of a C-N-C=O crosslinked bond. Cell culture and activity assessments indicate that the PIII-treated and crosslinked bFGF film exhibits significantly higher cell growth activity (<i>p</i> < 0.05) than the untreated group. These intergroup differences are attributed to the surface crosslinking bond content. In osteogenic induction, the results for each day show that the treated group performs better. However, the intergroup disparities within the crosslinked bFGF group disappear with prolonged culture time due to the rapid osteogenesis prompted by bFGF. The findings suggest that PIII treatment of electrospinning polylactic acid membranes holds promise in promoting osteogenesis in bone tissue scaffolds.</p>\",\"PeriodicalId\":23154,\"journal\":{\"name\":\"Tissue engineering. Part C, Methods\",\"volume\":\" \",\"pages\":\"268-278\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tissue engineering. Part C, Methods\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/ten.TEC.2024.0099\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue engineering. Part C, Methods","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/ten.TEC.2024.0099","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
A Biocompatible Nanofibers Modified by Plasma for Osteoblast Growth Differentiation.
This work employs nitrogen plasma immersion ion implantation (PIII) to modify electrospinning polylactic acid membranes and immobilizes basic fibroblast growth factors (bFGF) by forming crosslinking bonds. The study investigates the modified membranes' surface characteristics and the stimulatory effects of crosslinked bFGF polylactic acid membranes on osteoblast and fibroblast proliferation. The PIII process occurs under low vacuum conditions and is controlled by processing time and power pulse width. The experimental results indicate that, within a 400-second N2-PIII treatment, the spun fibers remain undamaged, demonstrating an increase in hydrophilicity (from 117° to 38°/36°) and nitrogen content (from 0% to 7.54%/8.05%). X-ray photoelectron spectroscopy analysis suggests the formation of a C-N-C=O crosslinked bond. Cell culture and activity assessments indicate that the PIII-treated and crosslinked bFGF film exhibits significantly higher cell growth activity (p < 0.05) than the untreated group. These intergroup differences are attributed to the surface crosslinking bond content. In osteogenic induction, the results for each day show that the treated group performs better. However, the intergroup disparities within the crosslinked bFGF group disappear with prolonged culture time due to the rapid osteogenesis prompted by bFGF. The findings suggest that PIII treatment of electrospinning polylactic acid membranes holds promise in promoting osteogenesis in bone tissue scaffolds.
期刊介绍:
Tissue Engineering is the preeminent, biomedical journal advancing the field with cutting-edge research and applications that repair or regenerate portions or whole tissues. This multidisciplinary journal brings together the principles of engineering and life sciences in the creation of artificial tissues and regenerative medicine. Tissue Engineering is divided into three parts, providing a central forum for groundbreaking scientific research and developments of clinical applications from leading experts in the field that will enable the functional replacement of tissues.
Tissue Engineering Methods (Part C) presents innovative tools and assays in scaffold development, stem cells and biologically active molecules to advance the field and to support clinical translation. Part C publishes monthly.